RELACIONES FENOTÍPICAS Y HETEROSIS ENTRE HÍBRIDOS COMERCIALES Y GERMOPLASMA EXÓTICO DE MAÍZ EN JALISCO, MÉXICO

PHENOTIPIC RELATIONSHIPS AND HETEROSIS AMONG COMMERCIAL HYBRIDS AND EXOTIC GERMPLASM OF MAIZE IN JALISCO, MÉXICO

Moisés Martín Morales Rivera¹, José Ron Parra^{1*}, José de Jesús Sánchez González¹, José Luis Ramírez Díaz², Lino de la Cruz Larios¹, Salvador Mena Munguía¹, Salvador Hurtado de la Peña¹ y Margarito Chuela Bonaparte²

¹Instituto de Manejo y Aprovechamiento de Recursos Fitogenéticos (IMAREFI), Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara. Km 15.5 Carr. Guadalajara-Nogales. 45110, Las Agujas, Nextipac, Mpio. de Zapopan, Jalisco, México. Tel. y Fax: 01 (333) 682-0743. ²Campo Experimental Centro-Altos de Jalisco, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP). Km 8 Carr. libre Tepatitlán-Lagos de Moreno. Tel. y Fax: 01(378) 782-0355.

*Autor para correspondencia (jron@cucba.udg.mx)

RESUMEN

En los programas de mejoramiento genético de maíz (Zea mays L.) de la región centro-occidente de México se han utilizado materiales genéticos adaptados, principalmente híbridos comerciales, poblaciones mejoradas y materiales exóticos provenientes de otras áreas. En este estudio se midieron las relaciones fenotípicas y genéticas entre poblaciones de maíz adaptadas y exóticas, para definir su mejor aprovechamiento genético, mediante técnicas de análisis multivariado (gráficas Biplot) y análisis de agrupamiento de materiales adaptados, exóticos y sus cruzas con caracteres agronómicos y componentes del rendimiento de mazorca. Se confirmó que el rendimiento de grano sigue siendo la variable más importante en la caracterización de materiales genéticos, en combinación con calidad de mazorca, acame y variables descriptivas del ciclo de madurez (floración masculina y femenina). Las técnicas de agrupamiento separaron con claridad los materiales adaptados de los exóticos, con excepción de las cruzas entre exóticos de más alto rendimiento ('Pob49 x P-3394' y 'Pob32 x P-3394'), las cruzas que involucraron materiales exóticos con germoplasma tropicalsubtropical en su genealogía ('Pob32 x SynB73' y 'Pob49 x Pob32'), y las cruzas que posiblemente involucraron materiales templados en su obtención ('A-7573 x P3066'). En las cruzas de adaptados x exóticos, las combinaciones con 'SynB73' y 'P-3394' se ubicaron en el grupo opuesto al de las cruzas con 'SynMo17 y 'Blanco de Ocho', y en el grupo intermedio predominaron cruzas con 'Pob49' y 'Pob32'.

Palabras clave: Zea mays, taxonomía numérica, materiales adaptados, materiales exóticos.

SUMMARY

Maize (Zea mays L.) breeding programs in central-western México have been using adapted genetic materials, mainly commercial hybrids, improved populations, and exotic materials introduced from other areas. In this study, phenotypic and genotypic relationships among adapted and exotic populations were measured to define the best way to use these materials in breeding programs. Multivariate analysis techniques (Biplot analysis) and cluster analysis applied to adapted and exotic materials and their crosses, were used with regard

to agronomic traits and ear yield components. It was confirmed that grain yield is still the most important variable in the characterization of genetic materials, in combination with lodging, ear quality and descriptive variables of the maturity cycle (days to tassel and silking flowering). Cluster analysis, clearly separated the adapted from the exotic materials, with the exception of some of the high yielding exotic crosses ('Pob49 x P-3394', and 'Pob32 x P-3394'), which involved exotic materials with sub-tropical and tropical germplasm in their pedigree ('Pob32 x SynB73' and 'Pob49 x Pob32'), and crosses that possibly involved temperate materials ('A-7573 x P-3066'). In crosses of adapted x exotic materials, the combinations with 'SynB73' and 'P-3394' were located in the opposite group from the crosses with 'SynMo17' and 'Blanco de Ocho', while in the intermediate group predominated crosses with 'Pob49' and 'Pob32'.

Index words: Zea mays, numerical taxonomy, adapted materials, exotic materials.

INTRODUCCIÓN

Las relaciones fenotípicas entre organismos reflejan en cierta forma sus distancias genéticas (Goodman, 1973). Estas distancias son importantes porque indican, en gran medida, la divergencia entre los alelos involucrados en la expresión de caracteres cuantitativos de importancia agronómica, como el rendimiento de grano. En cultivos de polinización cruzada como el maíz (Zea mays L.), cuya semilla híbrida es actualmente la de mayor importancia comercial, destaca la necesidad de conocer la divergencia entre genotipos, para así identificar y establecer patrones heteróticos entre poblaciones o grupos de germoplasma para la formación de híbridos comerciales. Se conocen patrones heteróticos importantes que se han formado de manera empírica, como son las combinaciones entre 'Reid Yellow Dent' (B73) y 'Lancaster Sure Crop' (Mo17) para regiones

Recibido: 25 de Octubre del 2005. Aceptado: 25 de Agosto del 2006. templadas, y 'Tuxpeño' y 'ETO' para trópicos y subtrópicos, y las combinaciones de materiales genéticos provenientes de distintas áreas agroecológicas como Valles Altos y El Bajío para las áreas de transición, en México.

En la determinación de las similitudes entre razas, especies y poblaciones se han usado diferentes formas de análisis; en las razas mexicanas de maíz tales similitudes se han investigado mediante técnicas multivariadas aplicadas a caracteres morfológicos (Goodman y Bird, 1977; Cervantes *et al.*, 1978; Sánchez y Goodman, 1992). Para determinar las interrelaciones y los grados de diversidad entre razas de maíz y teocintle se han usado diversos tipos de marcadores: isoenzimas (Doebley *et al.*; 1984, Sánchez *et al.*, 2000), nudos cromosómicos (Kato, 1984) y microsatélites (Provan *et al.*, 1999; Matsuoka *et al.*, 2002).

La aplicación de estas técnicas a materiales genéticos de maíz agronómicamente importantes, como variedades mejoradas y sus combinaciones, y los híbridos comerciales, podrían ser excelentes auxiliares en la identificación de sus interrelaciones genéticas; éstas servirían para orientar programas de mejoramiento genético en el desarrollo de nuevos híbridos, si se supone que la reducción de la diversidad genética y la disgregación de patrones heteróticos no es importante, en especial al comparar híbridos comerciales generados por diferentes programas de hibridación (Morales *et al.*, 2005).

Este estudio tuvo como objetivos: 1) Conocer las relaciones fenotípicas y genéticas entre poblaciones adaptadas y exóticas de maíz introducidas a Jalisco, México y sus cruzas; 2) Cuantificar su potencial de rendimiento de grano; y 3) Identificar patrones heteróticos para su aprovechamiento en áreas subtropicales de la región centro-occidente del pa-

MATERIALES Y MÉTODOS

Se estudiaron 12 poblaciones, seis adaptadas a Jalisco y seis exóticas. Las poblaciones adaptadas las conformaron seis híbridos comerciales, cinco de ellos provenientes de empresas privadas y un híbrido formado en el Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP); que son: 'Tornado', 'C-220', 'H-357', 'D-880', 'A-7573' y 'P-3066'. Las poblaciones exóticas fueron: 'SynB73', 'SynMo17', 'P-3394' (híbrido comercial templado), 'Pob49', 'Pob32' y el criollo 'Blanco de Ocho' de la raza Tabloncillo, colectado en el municipio de Zacoalco de Torres, Jal.

Con estos 12 materiales se hicieron las cruzas posibles en el ciclo Otoño-Invierno 1996–1997. Luego se evaluaron 85 materiales: 12 fueron los progenitores, 66 cruzas fueron las dialélicas entre dichos progenitores, y siete generaciones F_2 de los híbridos; además, se agregaron cinco testigos. El

experimento de 90 materiales se diseñó en bloques completos al azar con tres repeticiones, cuya unidad experimental fue de dos surcos de 5 m de largo y 0.80 m entre ellos; el experimento se sembró en condiciones de temporal o secano en dos años consecutivos; en 1997 en las localidades de Ameca (suelo arcilloso), Tlajomulco de Zúñiga (suelo arcilloso) y Zapotlanejo (suelo franco), con altitudes de 1250, 1500 y 1750 m, respectivamente; en 1998 se sembró solamente en Ameca y Tlajomulco de Zúñiga. El manejo agronómico se hizo de acuerdo con las recomendaciones técnicas del INIFAP para el cultivo del maíz en cada ambiente de evaluación (INIFAP, 1990).

Las variables medidas fueron: rendimiento de grano (REN) seco (0 % de humedad) en kg ha⁻¹; número de días a floración masculina (FM) y femenina (FF); altura de planta (PL) y de mazorca (MZ), en cm; sincronía floral (SF), en días; porcentaje de acame de raíz (RA) y de tallo (TA); número de mazorcas por planta (MP); por ciento de mazorcas dañadas (MD); número de plantas (NP); calificación de mazorca (CM), mediante una escala de 1 a 10, donde 10 fue lo mejor; longitud de mazorca (L), en cm; diámetro de mazorca (D), en cm; número de hileras de la mazorca (H); y número de granos por hilera (GR).

Se calculó el porcentaje de heterosis con base en el promedio de los progenitores (Fehr,1987) con el promedio a través de los cinco ambientes de evaluación. En los híbridos comerciales la heterosis se calculó con base en los valores en la generación F₂. Mediante el Análisis II propuesto por Gardner y Eberhart (1966) se estimaron los efectos de heterosis específica (ACE), con el procedimiento MIXED del paquete estadístico SAS (SAS Institute, 1994).

Las relaciones entre los materiales genéticos se establecieron con base en los análisis de agrupamiento y de componentes principales. Previo al análisis de agrupamiento, las similitudes se calcularon con la media de cada genotipo a través de ambientes, para todos los caracteres; dichas medias son los mejores estimadores de los efectos genéticos generales. Como medida de similitud entre genotipos se usó el coeficiente de correlación $r_{ij} = (\sum_k x_{ki} x_{kj})/(\sum_k x_{ki}^2 \sum_k x_{ki}^2 x_{kj})$ $(x_{kj})^{1/2}$, donde i, j correspondieron a los genotipos i y j, mientras que k corresponde a la variable k-ésima. Los valores de r_{ii} se calcularon después de estandarizar las variables a media cero y varianza 1. Con los valores estandarizados de r_{ii}, se llevó a cabo un análisis de agrupamiento con el método Promedio de Grupo (UPGMA) con el programa NTSYS 2.0 (Rohlf, 1993). Los resultados de los agrupamientos se presentan en dendrogramas y los del análisis de componentes principales en gráficas "Biplot", como lo describen Rawlings (1988) y Sánchez (1995).

Los elementos más importantes en la interpretación del "Biplot", son la dirección y longitud de los vectoresvariable, el ángulo entre vectores y la proximidad espacial entre los genotipos. Los vectores más largos involucran variables de mayor importancia en las primeras dos dimensiones, mientras que el ángulo entre vectores refleja correlación. Los valores relativos de las variables para un genotipo se pueden ver al proyectar el punto de dicho genotipo sobre el vector-variable. Los puntos localizados en sentido opuesto a la dirección del vector tendrán los menores valores para esa variable.

Se calculó la distancia euclidiana entre pares de progenitores, como $E_{ij} = [\Sigma_k (x_{ki} + x_{kj})^2]^{1/2}$, y se estimaron correlaciones simples entre los valores de distancia euclidiana, heterosis, aptitud combinatoria específica (heterosis específica) y rendimiento de grano de las cruzas.

RESULTADOS Y DISCUSIÓN

Relaciones fenotípicas

De acuerdo con el análisis de componentes principales (ACP), cuando se incluyeron las combinaciones de poblaciones adaptadas x adaptadas y exóticas x exóticas, y sus progenitores, tres componentes representaron 72.9 % de la variabilidad en los datos originales; el Componente 1 explicó 46 % de la variación total y fue definido principalmente por: rendimiento (REN), calificación de mazorca (CM), diámetro de mazorca (D), altura de mazorca (MZ), mazorcas dañadas (MD) y número de días a floración masculina (FM) y femenina (FF) (Cuadro 1 y Figura 1). El Componente 2 explicó 19 % de la variación total y se definió por las variables: acame de raíz (RA), número de hileras por mazorca (H) y granos por hilera (GR); el Componente 3 explicó 8 % de la variación total y estuvo definido por las variables: número de plantas (NP) y longitud de mazorca (L).

El análisis de agrupamiento permitió definir tres grupos (Figura 2). El Grupo 1 se conformó, principalmente, con cruzas entre materiales adaptados en dos subgrupos: en el primero (1a) predominan las cruzas con 'C-220' y en el segundo (1b) con 'Tornado'. Con base en las medias por grupo (Cuadro 2), el primer grupo se caracteriza por presentar rendimientos arriba de la media general, ciclo tardío, porte de planta alto, porcentajes más bajos de acame de raíz y tallo, y mejor calidad de mazorca. El Grupo 2 estuvo formado por combinaciones entre poblaciones exóticas, y se dividió en dos subgrupos; el primero (2a) tiene como base a los sintéticos 'SynMo17' y 'SynB73', y el segundo (2b) al criollo 'Blanco de Ocho'. El Grupo 2 se caracteriza por tener rendimientos menores que la media general, ciclo precoz, valores altos de acame de raíz especialmente en el subgrupo 2b y acame de tallo mayor que la media, mala calidad de mazorca y pocas hileras en el subgrupo 2b.

En este agrupamiento (Figura 2) cabe destacar la clara separación de combinaciones entre los materiales adaptados representados por los híbridos comerciales (Grupo 1) que incluyeron las cruzas de exóticos 'Pob49xP-3394' y 'Pob32xP-3394', posiblemente por sus altos rendimiento. También se separaron las combinaciones entre materiales exóticos (Grupo 2) que involucraron la cruza entre adaptados 'A-7573xP-3066', cuyos progenitores ya habían sido asociados con germoplasma templado en otro estudio (De La Cruz *et al.*, 2003). Entre los dos grandes grupos (Figura 2) se identificó un tercero que involucra a 'Pob49' y 'Pob32' con valores intermedios entre los dos grandes grupos (Cuadro2).

El ACP que involucra las combinaciones entre materiales adaptados x exóticos y sus progenitores se presenta en la Figura 3. Los primeros tres componentes explicaron 69 % de la variación total; el Componente 1 representó 38 % de la variación total y estuvo definido por: calificación de mazorca (CM), mazorcas dañadas (MD), rendimiento (REN), altura de mazorca (MZ), días a floración masculina (FM) y diámetro de mazorca (D). El Componente 2 representó 22 % de la variación total y se definió por: el número de hileras por mazorca (H), granos por hilera (GR) y acame de raíz (RA). El Componente 3 representó 9 % de la variación total y estuvo definido por floración femenina (FF), número de plantas (NP) y rendimiento (REN).

Con base en el ACP (Cuadro 1; Figuras 1 y 3), las variables rendimiento de grano (REN), días a floración (FM, FF), calidad de mazorca (MD, CM) y acame (TA, RA), fueron las que tuvieron mayor importancia en las primeras dimensiones y definieron las relaciones entre las cruzas de materiales adaptados x adaptados, exóticos x exóticos, adaptados x exóticos y sus respectivos progenitores.

En el análisis de agrupamiento de cruzas entre poblaciones adaptadas x exóticas y sus progenitores (Figura 4) se definieron tres grupos; en el Grupo 1 predominaron las combinaciones con 'SynB73' y se caracterizó por tener rendimiento arriba de la media, ciclo intermedio y buena sincronía floral, principalmente (Cuadro 2). El Grupo 2 incluvó las combinaciones con las mejores características agronómicas, especialmente donde participaron las poblaciones adaptadas (híbridos comerciales) en combinación con las exóticas 'Pob32' ('ETO') y 'Pob49' ('Tuxpeño'); este grupo se caracterizó por tener rendimiento alto, ciclo tardío, buena sincronía floral, planta alta, posición de mazorca baja y buena calidad de mazorca. El Grupo 3 incluyó combinaciones donde predominaron los exóticos 'Blanco de Ocho' y 'SynMo17', e incluyó poblaciones que se caracterizaron por tener rendimientos menores que la media general, ciclo precoz, problemas de acame sobre todo de raíz, baja calidad de mazorca y mazorcas delgadas con pocas hileras.

En los tres grupos anteriores (Figura 4), es importante destacar la separación de las combinaciones donde

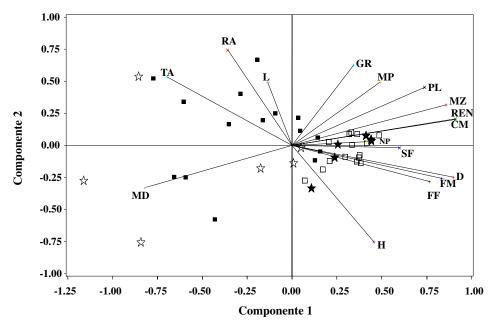


Figura 1. Componentes principales de cruzamientos entre poblaciones adaptadas x adaptadas (\Box) y exóticas x exóticas (\blacksquare) y sus progenitores exóticos (\bigstar) y adaptados (\bigstar)

		Adaptadas x adaptadas y exóticas x exóticas			Adapt		
Variable	Clave	C 1	C 2	C 3	C 1	C 2	C 3
Rendimiento	REN	0.91	0.21	-0.05	0.78	0.25	0.50
Floración masculina	FM	0.83	-0.26	0.13	0.77	-0.29	-0.47
Floración femenina	FF	0.77	-0.28	0.11	0.67	-0.30	-0.57
Altura de planta	PL	0.74	0.46	-0.03	0.54	0.57	0.05
Altura de mazorca	MZ	0.86	0.32	-0.09	0.78	0.44	-0.21
Sincronía floral	SF	0.60	-0.02	0.09	0.56	-0.02	0.23
Acame de raíz	RA	-0.36	0.74	-0.29	-0.17	0.72	-0.34
Acame de tallo	TA	-0.70	0.54	0.02	-0.61	0.57	0.02
Mazorcas dañadas	MD	-0.82	-0.33	0.24	-0.84	-0.34	-0.09
Mazorcas por planta	MP	0.49	0.50	0.36	0.72	0.09	-0.08
Número de plantas	NP	0.42	0.03	-0.80	0.19	0.18	0.55
Calificación de mazorca	CM	0.91	0.20	0.02	0.90	0.25	-0.10
Longitud de mazorca	L	-0.14	0.49	0.43	-0.10	0.53	-0.03
Diámetro de mazorca	D	0.90	-0.25	0.04	0.77	-0.37	0.26
Hileras por mazorca	Н	0.46	-0.76	0.16	0.34	-0.80	0.25
Granos por hilera	GR	0.34	0.63	0.25	0.06	0.77	0.13
Variación (%)		46	19	8	38	22	9

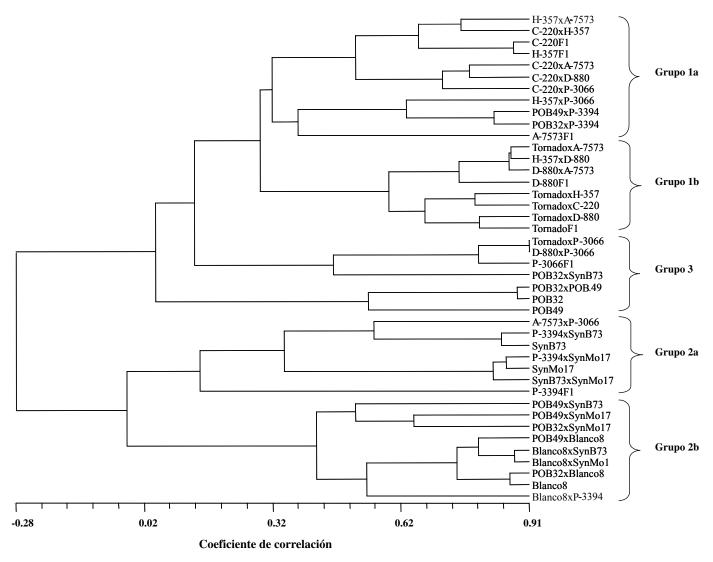


Figura 2. Agrupamiento de cruzas entre poblaciones adaptadas x adaptadas y exóticas x exóticas y sus progenitores.

Cuadro 2. Medias de variables agronómicas por grupos, de acuerdo con las Figuras 2 y 4.

		Poblaciones adaptadas x adaptadas, exóticas x exóticas y sus progenitores					Poblaciones adaptadas x exóticas y sus progenitores		
Variables	Promedio general	Grupo 1a	Grupo 1b	Grupo3	Grupo 2a	Grupo 2b	Grupo1	Grupo2	Grupo3
Rendimiento (kg ha ⁻¹)	5820.4	6679.8	6318.2	5907.1	4198.5	5297.7	6430.0	6044.9	5520.6
Floración masculina (días)	67.9	70.9	72.5	68.7	64.3	61.7	66.5	71.7	64.1
Floración femenina (días)	69.0	70.8	74.4	70.0	66.1	63.4	66.9	72.5	65.7
Altura de planta (cm)	223.6	226.6	230.9	231.7	205.6	223.0	220.3	227.7	223.5
Altura de mazorca (cm)	112.4	120.0	120.9	117.7	93.1	108.8	107.6	119.5	108.6
Sincronía floral (días)	-1.1	0.2	-1.9	-1.3	-1.8	-1.7	-0.4	-0.8	-1.6
Acame de raíz (%)	11.7	9.5	7.0	13.9	7.5	20.8	6.3	13.1	15.6
Acame de tallo (%)	4.6	3.3	3.6	3.0	5.3	8.6	3.7	3.1	6.4
Mazorcas dañadas (%)	8.4	5.8	6.1	7.2	15.8	9.1	8.5	6.2	10.3
Mazorcas por planta (núm)	0.9	0.9	0.9	1.0	0.8	0.9	0.9	0.9	0.9
Número de plantas	42.8	43.2	43.4	42.0	40.3	42.6	43.7	42.7	42.6
Calificación de planta (1-10)	6.1	6.9	6.8	6.4	4.9	5.7	6.0	6.7	5.8
Longitud de mazorca (cm)	13.1	13.1	13.0	13.0	13.1	13.9	12.8	12.9	13.8
Diámetro de mazorca (cm)	4.7	4.9	4.8	4.7	4.4	4.3	4.8	4.8	4.4
Hileras por mazorca (núm)	14.5	15.1	14.9	15.1	15.3	11.9	15.8	14.9	13.2
Granos por hilera (núm)	34.2	34.8	34.7	34.1	32.6	35.6	33.5	34.0	35.5

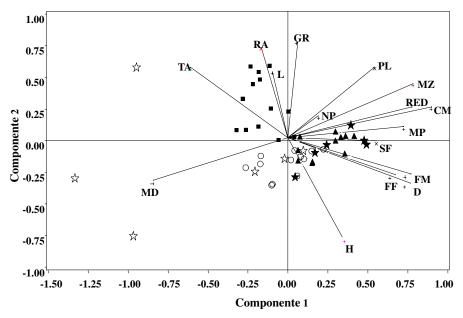


Figura 3. Componentes principales de cruzamientos entre poblaciones adaptadas x exóticas, correspondientes al Grupo 1 (\circ), Grupo 2 (\blacktriangle) y Grupo 3 () de la Figura 4, y sus progenitores exóticos (\bigstar) y adaptados (\bigstar)

Cuadro 3. Rendimiento de grano y otras características de materiales de maíz adaptados y exóticos, en promedio de cinco ambientes de prueba en Ja-

isco.								
Características	Adaptacion				iales genéticos			Promedi
	Adaptados (A)	A-7573	H-357	P-3066	C-220	Tornado	D-880	
	Auaptauos (A)	(1)	(2)	(3)	(4)	(5)	(6)	
Rendimiento	Adaptados F ₁	7236	6541	6419	6357	6216	5444	6369
(kg ha ⁻¹)	Adaptados F ₂	4593	4378	4704	4665	4344	3404	4348
	AxA	6582	6764	6606	6528	6568	6285	6555
	ΑxΕ	6384	6616	5594	6352	6217	6077	6207
(1-+:- (0/)	Adaptados	48	56	48	46	51	58	51
Heterosis (%)	Exóticos	55	66	34	54	57	75	57
70 a b	Heterosis	60	546*	-92	144	38	336*	172
Efectos (kg ha ⁻¹)	Varietal	663*	193	51	527	302	-536*	200
514 1 111	Adaptados	3.5	3.3	3.5	3.2	3.6	4.1	3.5
Distancias euclidianas	Exóticos	5.6	6.3	5.8	6.3	6.2	5.2	5.9
	Exóticos (E)	P-3394 (7)	Pob32 (8)	Pob49 (9)	Blanco de Ocho (10)	SynB73 (11)	SynMo17 (12)	
	Per se	5006	4964	4948	4276	2930	2468	4099
Rendimiento	ExA	6634	6123	6300	6141	6060	5983	6207
(kg ha ⁻¹)	ЕхЕ	5556	5831	6049	5243	5124	4719	5420
(Iti- (0/)	Adaptados	88	35	32	43	67	76	57
Heterosis (%)	Exóticos	65	40	46	34	51	47	47
Ε ε (-	Heterosis	-679*	876*	766*	-4.03	-1227*	-932*	-200
Efectos (kg ha ⁻¹)	Varietal	387*	-589*	-284*	-395*	120	-270*	-172
Distancias euclidianas	Adaptados	4.7	3.8	3.8	7.9	7.4	7.9	5.9
Distancias eucitulanas	Exóticos	5.9	5.2	6.1	6.6	5.9	6.0	6.0

^{*, **} Valores significativos al 0.05 y 0.01 de probabilidad, respectivamente.

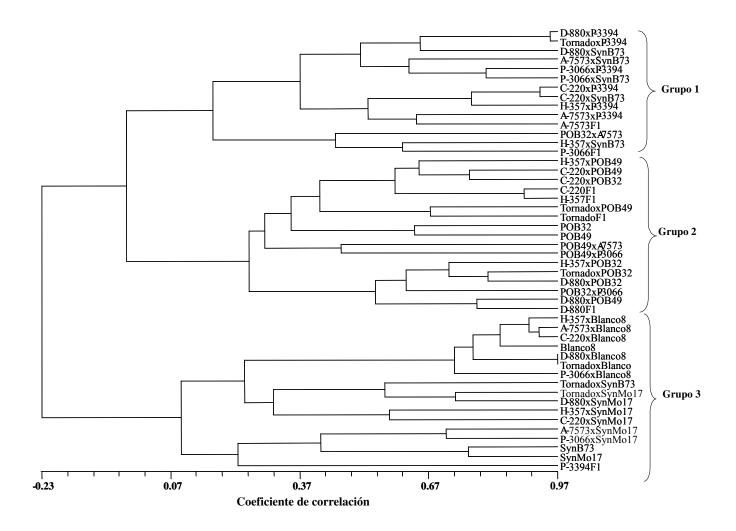


Figura 4. Agrupamiento de cruzas entre poblaciones adaptadas x exóticas y sus progenitores.

intervinieron 'SynMo17' (Grupo 3), y 'SynB73' y 'P-3394' (Grupo 1), lo que justifica el uso y reconocimiento del patrón heterótico entre 'SynMo17' y 'SynB73'; así como la opción de usar como patrón heterótico a las combinaciones entre 'SynMo17' y 'P-3394'. Sólo fue posible detectar las diferencias y relaciones entre estos materiales con el uso de sus cruzas, ya que por sus valores *per se* estuvieron ubicados en el mismo grupo (Grupo 3). Es interesante observar la similitud entre las combinaciones donde intervinieron 'Pob49' y 'Pob32' (Grupo 2), que podría ser un indicador de la relación genética entre estas dos poblaciones con los híbridos comerciales adaptados.

Heterosis y distancias genéticas

Los resultados para rendimiento de grano (Cuadro 3) confirman lo informado por De La Cruz *et al.* (2003) con datos de un año y tres localidades, en lo referente a la im-

portancia de las combinaciones entre poblaciones adaptadas y exóticas, estas últimas procedentes de regiones templadas.

Los valores de rendimiento, distancias euclidianas, heterosis y aptitud combinatoria específica (ACE), para las cruzas entre poblaciones adaptadas y entre poblaciones exóticas (Cuadro 4), y entre adaptadas por exóticas (Cuadro 5), se muestran ordenados de acuerdo con los grupos definidos en los dendrogramas de las Figuras 2 y 4. Según el Cuadro 4, el rendimiento promedio del Grupo 1 (6588 kg ha¹), formado en su mayoría por combinaciones entre poblaciones adaptadas x adaptadas, fue superior al rendimiento del Grupo 2 (5199 kgha¹) conformado por combinaciones entre poblaciones exóticas, con excepción de 'A-7573 x P-3066'. Las distancias euclidianas, en promedio, fueron mayores en el Grupo 2 donde sobresale la cruza de 'Blanco de Ocho x P-3394' (7.5); 'Blanco de Ocho' es un criollo regional no mejorado y 'P-3394' un híbrido comercial

Cuadro 4. Rendimiento de grano y parámetros genéticos de cruzas de poblaciones adaptadas x adaptadas, exóticas x exóticas evaluadas en cinco ambientes.

oientes.	Cruza		REN (kg ha ⁻¹)	Distancias euclidianas	Heterosis (%)	ACE (kg ha ⁻¹)
~ 4	V 257 A 7572		6007	2.4	5.4	151
Grupo 1	H-357 x A-7573		6897	3.4	54	-151
	H-357 x P-3066		6791	3.0	50	90
	C-220 x A-7573		6736	3.4	46	-160
	C-220 x P-3066		6717	3.2	43	344
	C-220 x H-357		6631	1.6	47	-467
	C-220 x D-880		6150	4.6	52	-342
	POB. 49 x P-3394		6827	5.1	77	578
	POB. 32 x P-3394		6595	4.6	71	494
	Tornado x A-7573		6880	3.8	54	46
	Tornado x H-357		6878	3.6	58	-177
	H-357 x D-880		6622	4.7	70	-150
	Tornado x C-220		6404	3.5	42	-388
	D-880 x A-7573		6172	3.4	54	-411
	Tornado x D-880	D " C 1	5930	3.4	53	-536
		Promedio Grupo 1	6588	3.7	55	-88
Grupo 2	A-7573 x P-3066		6223	3.2	34	-246
	P-3394 x Syn. B73		4549	6.2	60	-1052
	P-3394 x Syn. Mo17		4149	6.3	58	-1194
	Syn. B73 x Syn. Mo17		4062	4.4	51	-771
	POB. 49 x Syn. B73		6199	5.7	57	544
	POB. 49 x Blanco de Ocho		5911	6.4	28	108
	Blanco de Ocho x P-3394		5660	7.5	61	18
	POB. 49 x Syn. Mo17		5532	6.7	49	132
	POB. 32 x Syn. Mo17		5459	6.9	47	254
	POB. 32 x Blanco de Ocho		5382	6.6	16	-237
	Blanco de Ocho x Syn. B73		4866	7.0	35	-270
	Blanco de Ocho x Syn. Mo17		4394	5.7	30	-543
		Promedio Grupo 2	5199	6.0	44	-271
Grupo 3	Tornado x P-3066		6747	3.5	49	363
	D-880 x P-3066		6553	4.4	62	424
	POB. 32 x Syn. B73		5942	6.1	51	474
	POB. 32 x POB.49		5776	2.0	17	-296
		Promedio Grupo 3	6255	4.0	45	241

^{*} Valores significativos al 0.05 de probabilidad; REN = Rendimiento de grano en materia seca; ACE = Aptitud combinatoria específica.

	ndimiento y parámetros genétic Cruza	•	REN (kg ha ⁻¹)	Distancias euclidianas	Heterosis (%)	ACE (kg ha ⁻¹)	
Grupo 1	D-880 x P-3394		7062	4.5	129	822	*
Grupo 1	C220 x P-3394		7061	4.8	90	541	*
	H-357 x P-3394		7032	5.2	97	266	
	A-7573 x P-3394		6616	3.9	80	44	
	A-7573 x Pob32		6616	3.9	38	267	
	H-357 x SynB73		6394	8.0	75	108	
	Tornado x P-3394		6384	5.1	80	-134	
	C220 x SynB73		6246	8.2	64	261	
	A-7573 x Syn.B73		6167	7.0	64	240	
	D-880 x Syn.B73		5780	6.0	83	92	
	P-3066 x P-3394		5649	4.5	51	-384	
	P-3066 x Syn. B73		5348	7.1	40	-188	
		Promedio Grupo 1	6363	6.0	74	161	
C 2	H-357 x Pob49		6824	4.4	46	30	
Grupo 2	C220 x Pob49		6759	4.2	41	259	
	H-357 x Pob32		6681	3.9	43	43	
	A-7573 x Pob49		6511	3.8	36	-78	
	Tornado x Pob49		6178	3.9	33	-330	
	Tornado x Pob32		6085	3.9	31	-160	
	P-3066 x Pob49		5834	3.8	21	-273	
	D-880 x Pob32		5800	3.6	39	-182	
	P-3066 x Pob32		5795	3.7	20	-123	
	C220 x Pob32		5760	3.7	20	-533	
	D-880 x Pob49		5691	2.7	36	-673	
		Promedio Grupo 2	6174	4.0	33	-184	
	H-357 x Blanco de Ocho		6446	8.2	49	101	
Grupo 3	Tornado x SynB73		6429	8.1	77	563	*
	H-357 x SynMo17		6320	8.4	85	307	
	A-7573 x Blanco de Ocho		6317	7.4	42	180	
	Tornado x SynMo17		6309	8.3	85	873	,
	C220 x Blanco de Ocho		6286	8.4	41	213	
	D-880 x Blanco de Ocho		6230	7.4	62	521	,
	A-7573 x SynMo17		6077	7.5	72	269	
	C220 x SynMo17		6003	8.4	68	274	
	Tornado x Blanco de Ocho		5918	8.1	37	-120	
	D-880 x SynMo17		5897	7.1	101	435	
	P-3066 x Blanco de Ocho		5647	7.6	26	29	
	P-3066 x SynMo17		5290	7.8	48	-36	
		Promedio Grupo 3	6090	8.0	61	278	
		Promedio general	6207	6.0	57	98	

^{*} Valores significativos al 0.05 de probabilidad; REN = Rendimiento de grano en materia seca; ACE = Aptitud combinatoria específica.

introducido de la región templada, y ambos pudieran considerarse representantes opuestos desde el punto de vista de esfuerzos en su mejoramiento genético. Por parte del Grupo 1, la distancia menor se obtuvo entre 'C-220' y 'H-357', ambos desarrollados para áreas subtropicales y tropicales de México.

Los valores más altos de heterosis, que también correspondieron a los valores más altos y significativos de ACE, se encontraron en las combinaciones de 'P-3394' con 'Pob49', que confirma con lo encontrado por De La Cruz *et al.* (2003), y con 'Pob32' ubicados en el Grupo 1 (Cuadro 4). Este mismo híbrido 'P-3394' combinado con 'D-880', 'C-220' y 'H-357', también tuvo altos rendimientos, que también confirma los resultados de De La Cruz *et al.* (2003), lo cual repercutió en valores altos de heterosis y ACE; estas combinaciones se ubicaron en el Grupo 1 de las cruzas entre materiales adaptados por exóticos (Cuadro 5).

El rendimiento de grano de las cruzas se asoció positivamente con heterosis (r = 0.34) y ACE (r = 0.61), pero su relación con la distancia euclidiana (r = -0.28) fue negativa y significativa ($P \le 0.05$); esto podría indicar que el rendimiento de grano no se definió por las diferencias fenotípicas entre los materiales cruzados, sino que dependió de los efectos genéticos de heterosis y ACE. La heterosis estuvo más asociada con ACE (r = 0.50) que con la distancia euclidiana (r = 0.26), y éstas dos últimas también estuvieron asociadas (r = 0.34). Estas asociaciones confirman la necesidad de continuar estudios tendientes a la búsqueda de valores o parámetros genéticos más precisos, como los marcadores moleculares (Teklewold y Becker, 2006; Betrán *et al.*, 2003), para poder hacer predicciones más acertadas del comportamiento de híbridos.

CONCLUSIONES

El análisis de componentes principales (ACP) indicó que el rendimiento de grano, la precocidad, el acame y la calidad de mazorca, fueron las variables de mayor importancia para definir la estructura de la variabilidad fenotípica entre los materiales genéticos adaptados y exóticos.

La técnica de agrupamiento de las cruzas con base en caracteres agronómicos permitió la separación de las cruzas entre poblaciones adaptadas y exóticas. Con el valor de las cruzas se logró detectar diferencia genética entre 'Syn-Mo17' y 'SynB73', que da un patrón heterótico representativo de las regiones templadas.

El rendimiento de grano de las cruzas dependió principalmente de la heterosis y la ACE, que a su vez estuvieron asociados positivamente. Se confirmó la importancia de utilizar germoplasma exótico, especialmente el mejorado, en la formación de nuevos híbridos de maíz para la región centrooccidente de México.

BIBLIOGRAFÍA

- Betrán F J, J M Ribaut, D Beck, D González de León (2003) Genetic diversity, specific combining ability, and heterosis in tropical maize under stress and nonstress environments. Crop Sci. 43:797-806
- Cervantes S T, M M Goodman, E Casas D (1978) Efectos genéticos y de interacción genotipo-ambiente en la clasificación de las razas mexicanas de maíz. Agrociencia 30:25-30.
- De La Cruz L L, J Ron P, J L Ramírez D, J J Sanchez G, M M Morales R, M Chuela B, S A Hurtado de la P, S Mena M (2003) Heterosis y aptitud combinatoria entre híbridos comerciales y germoplasma exótico de maíz en Jalisco, México. Rev. Fitotec. Mex. 26:1-10.
- **Doebley J F, M M Goodman, C W Stuber (1984)** Isozymatic variation in *Zea (Gramínea)*. Sist. Bot. 9:203-218.
- Fehr W R (1987) Principles of Cultivar Development. Volume I. Theory and Technique. Iowa State University. Ed. McGraw-Hill, Inc. 525 p.
- **Gardner C O, S A Eberhart (1966)** Analysis and interpretation of variety cross diallel and related populations. Biometrics 22:439-452.
- Goodman M M, R McK Bird (1977) The races of maize IV: Tentative grouping of 219 Latin American races. Econ. Bot. 31:204-221.
- Goodman M M (1973) Genetic distances: Measuring dissimilarity among populations. Yrbk. Phys. Anthropol. 17:1-38.
- INIFAP (1990) Guía para cultivar maíz en Jalisco. SARH. INIFAP. CIFAP-JAL. Folleto para productores Num. 3. 27 p.
- **Kato Y A (1984)** Chromosome morphology and the origin of maize and its races. *In*: Evolutionary Biology, Vol. 17. M K Hecht, B Wallace, G T Prance (eds). Plenum Pub. pp:219-253.
- Matsuoka, Y, Y Vigouroux, M M Goodman, J Sanchez G, E Buckler, J Doebley (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Nat. Acad. Sci., USA. 99:6080-6084
- Morales M M, J Ron P, J J Sánchez G, J L Ramírez D, L de La Cruz L, S Mena M, S Hurtado de la P, M Chuela B (2005) Diversidad genética entre híbridos comerciales de maíz de Jalisco liberados en la decada de 1990. Rev. Fitotec. Mex. 28:115-126.
- Provan J, P Lawrence, G Young, F Wright, R Bird, G Paglia, F Cattonaro, M Morgante, W Powell (1999) Analysis of the genus Zea (Poaceae) using polymorphic chloroplast simple sequence repeats. Plant Syst. Evol. 218:245-256.
- **Rohlf (1993)** NTSYS-PC. Numerical taxonomy and multivariate analysis system. Exeter software, Inc.
- Rawlings J O (1988) Applied Regression Analysis. Wadswoeth & Brooks/Cole Advanced Books&Software. Pacific Grove, California. 553 p.
- Sánchez G J J (1995) El análisis Biplot en clasificación. Rev. Fitotec. Mex. 18:188-203
- Sánchez G J J, M M Goodman (1992) Relationships among the Mexican races of maize. Econ. Bot. 46:78-85.
- Sánchez G J J, C W Stuber, M M Goodman (2000) Isozymatic diversity in races of maize of the Americas. Maydica 45:185-203.
- SAS Institute (1994) The SAS System for Windows. SAS Institute Inc. Cary, NC 27513, USA.
- **Teklewold A, H C Becker (2006)** Comparison of phenotypic and molecular distances to predict heterosis and F₁ performance in Ethiopian mustard (*Brassica carinata* A. Braun). Theor. Appl. Gen. 112:752-759