

COMPORTAMIENTO PRODUCTIVO DEL CULTIVO DE SOYA VARIEDAD SALCER A DIFERENTES DENSIDADES DE POBLACIÓN Y MOMENTOS DE COSECHA

PRODUCTIVE PERFORMANCE OF SALCER SOYBEAN VARIETY AT DIFFERENT PLANT DENSITIES AND HARVEST TIMES

Josué Jonathan Ríos-Hilario¹, María de los Ángeles Maldonado-Peralta²*, Adelaido Rafael Rojas-García², Elías Hernández-Castro², Juan Elías Sabino-López² y Héctor Ramón Segura-Pacheco³

¹Universidad Autónoma de Guerrero (UAGro), Facultad de Ciencias Agropecuarias y Ambientales, Iguala de la Independencia, Guerrero, México. ²UAGro, Facultad de Medicina Veterinaria y Zootecnia No 2, Cuajinicuilapa, Guerrero, México. ³UAGro, Unidad de Estudios de Posgrado e Investigación, Acapulco, Guerrero, México.

* Autor de correspondencia (mmaldonado@uagro.mx)

RESUMEN

La soya [Glycine max (L.) Merr.] es un recurso forrajero de alta calidad, por sus características nutricionales y producción de biomasa, pero la adopción y establecimiento en praderas es limitado debido al poco conocimiento sobre el manejo agronómico. El objetivo del presente estudio fue evaluar el potencial productivo y las características morfológicas de soya variedad Salcer a diferentes densidades de población y edad al corte en condiciones de trópico seco. Se evaluaron cuatro densidades de población 250,000, 125,000, 62,500 y 41,250 plantas ha-1 cada ocho días a partir de los 30 días hasta los 75 posteriores a la germinación, bajo un diseño de bloques completos al azar con tres repeticiones. La producción de forraje, tasa de crecimiento, altura de planta, relación hoja:tallo, radiación interceptada y composición morfológica fueron evaluadas. El rendimiento de forraje fue mayor cuando la población fue a altas densidades que a bajas con 4462 y 2958 kg MS ha⁻¹, respectivamente (P \leq 0.05) con 250,000 y 41,250 plantas ha⁻¹. No hubo diferencias entre densidades para la relación hoja:tallo (P > 0.05); con respecto a la edad de corte, se obtuvieron los mayores valores con un promedio superior a la unidad en los días 30 a 52 (1.93 y 1.20). La soya interceptó mayor radiación durante el día 60 (82 %). La densidad de población y la edad al corte son factores determinantes en el rendimiento de materia seca en soya forrajera, donde las densidades de 250,000 y 125,000 plantas ha⁻¹ se comportaron mejor y se recomienda cortar entre los 52 y 60 días.

Palabras clave: *Glycine max*, calidad morfológica, cultivo forrajero, edad de corte, leguminosa, manejo agronómico.

SUMMARY

Soybean [Glicyne max (L.) Merr.] is a high-quality forage resource, due to its nutritional characteristics and biomass production, but its adoption and establishment in grasslands are limited due to little knowledge about agronomic management. This study aimed to evaluate the production potential and morphological characteristics of soybean cv. Salcer at different plant densities and age at cutting in dry tropic conditions. Four plant densities were evaluated: 250,000, 125,000, 62,500 and 41,250 plants ha-1 every eight days from 30 to 75 days after germination, under a randomized complete block design with three replications. Forage production, growth rate, plant height, leaf:stem ratio, intercepted radiation and morphological composition were evaluated. Forage yield was higher at high densities than at low densities with 4462 and 2958 kg DM ha-1, respectively ($P \le 0.05$) with 250,000 and 41,250 plant ha-1. There were no differences between densities for the leaf: stem ratio (P > 0.05); in regard to cutting age, the highest values were obtained with

an average higher than 1 on days 30 to 52 (1.93 and 1.20) on days 30 to 52. Soybean intercepted more radiation at day 60 (82 %). Plant density and age at cutting are determining factors in dry matter yield in forage soybeans, where densities of 250,000 and 125,000 plants ha^{-1} performed better, and cutting between 52 and 60 days is recommended.

Index words: forage crop, legume, morphological quality, agronomic management, harvest stages

INTRODUCCIÓN

En la alimentación de rumiantes, las leguminosas forrajeras utilizadas como suplemento en dietas de baja calidad, solas o asociadas con gramíneas, en los periodos de escasez han demostrado mantener o incrementar la ganancia diaria de peso (González et al., 2012; Reyes et al., 2012: Torres et al., 2020) y producción de leche (Azzaz et al., 2016; Castro-Montoya et al., 2019). Las leguminosas forman parte de los ecosistemas naturales y cultivados (Fraile et al., 2007; Garduza-Acosta et al., 2020), tienen la habilidad de establecer una relación simbiótica con bacterias del genero Rhizobium, lo que permite la fijación de nitrógeno atmosférico al suelo (Gulwa et al., 2018; Pratap et al., 2021), son vitales en la resiliencia a los efectos del cambio climático y participan en la seguridad alimentaria (Liew et al., 2014); sin embargo, la adopción y establecimiento de praderas de leguminosas forrajeras y su uso en la alimentación del ganado es poco común en México (Schultze-Kraft et al., 2018), debido al desconocimiento o falta de información sobre el manejo agronómico, como es el caso de la densidad de población de especies de calidad, adaptadas a las condiciones edafoclimáticas del trópico seco (Enríquez y Quero, 2006; Sosa et al., 2008).

La soya es una leguminosa que se utiliza a nivel mundial en la alimentación, como fuente de proteína vegetal (Kim *et al.*, 2016), se adapta a diferentes condiciones ambientales,

Recibido: 17 de diciembre de 2021 **DOI:** https://doi.org/10.35196/rfm.2023.1.3

Aceptado: 07 de febrero de 2023

manejo agronómico (Asekova *et al.*, 2014) y se cultiva principalmente para la obtención de grano (Cruz *et al.*, 2016; Novelli *et al.*, 2011). En condiciones de escasez de forraje, esta especie representa un excelente recurso alimenticio debido a sus características nutricionales y producción de biomasa (Tobía y Villalobos, 2004). Al usarse como forraje puede ensilarse en combinación con gramíneas y melaza, o en heno para raciones balanceadas (Tobía *et al.*, 2006). En estudios realizados en soya forrajera en condiciones de clima mediterráneo se reportan rendimientos de entre 9300 y 11,300 kg MS ha⁻¹ en los estadios R4 (vaina llena) y R6 (semilla desarrollada), respectivamente (Acikgoz *et al.*, 2007).

En las especies forrajeras, el manejo de la densidad de población y el estado de madurez al corte son factores determinantes del rendimiento y calidad física del cultivo, pues existe correlación directa entre la edad de corte y la producción de materia seca; ésto indica que a medida que se incrementa la edad al corte también lo hace la producción de biomasa (Acikgoz et al., 2007; Alatorre-Hernández et al., 2018; Burbano-Erazo et al., 2019; Rojas et al., 2019). Considerando lo anterior y que la información disponible sobre el manejo de la densidad de población y edad al corte para la obtención de forraje de soya, según la condición ambiental, es limitada, el objetivo del presente estudio fue evaluar el potencial productivo y las características morfológicas de soya a diferentes densidades de población y edad al corte en el trópico seco.

MATERIALES Y MÉTODOS

Localización del área experimental

La evaluación del rendimiento de forraje y características morfológicas de soya forrajera se llevó a cabo durante los meses dejulio a octubre de 2020 en una parcela experimental en Tecuescontitlán, municipio de Tepecoacuilco de Trujano, Guerrero, México, localizada a 18° 08′ LN y 99° 33′ LO, a 782 msnm. La zona posee un clima cálido subhúmedo con lluvias en verano, con una precipitación anual promedio de 790 mm y temperatura media de 26 °C (García, 2004). Los datos de temperatura máxima, media y mínima, así como de precipitación acumulada semanal durante el periodo de estudio se obtuvieron de la estación meteorológica 12092 ubicada en Tonalapa del Sur, a 5.1 km de la parcela experimental (Figura 1). La textura del suelo es franco arenosa con un pH de 7.3, CE de 0.3 dS m-1 y contenido de materia orgánica de 2.1 %.

Manejo de la parcela

La parcela experimental se estableció el 30 de julio de 2020, durante la época de lluvia. El terreno se barbechó, rastreó y surcó antes de la siembra. Se utilizaron 16 parcelas de 5 × 5 m, las cuales constituyeron las unidades experimentales distribuidas al azar con tres repeticiones. La semilla de soya empleada fue de la variedad Salcer, generada por el Colegio Superior Agropecuario del Estado de Guerrero. Se evaluaron cuatro densidades de población: 250,000, 125,000, 62,500 y 41,250 plantas ha-1, con una separación entre surco de 80 cm y 5, 10, 20 y 30 cm entre plantas, respectivamente. La siembra y el control de la maleza se llevaron a cabo manualmente, no se aplicaron riegos ni fertilización. A partir de los 30 días después de la germinación, se valuaron las siguientes variables con intervalos de ocho días hasta llegar a la etapa reproductiva R6 (semilla completamente desarrollada).

Variables evaluadas

Rendimiento de forraje

Para el rendimiento forrajero (kg MS ha¹) se realizaron muestreos destructivos al azar de cada unidad experimental, utilizando un cuadrante metálico de 0.5 × 0.5 m. La altura de corte fue a 10 cm sobre el nivel del suelo. El material vegetativo colectado se depositó en bolsas de papel, se pesó con una balanza (Ohaus® TJ2611, Parsippany, New Jersey, EUA), y posteriormente se secó a 60 °C en una estufa eléctrica de aire forzado (Riossa® HCF32D, México) hasta alcanzar peso constante.

Tasa de crecimiento

La tasa de crecimiento se determinó al dividir el rendimiento de materia seca entre el tiempo de corte transcurrido con la siguiente formula: TC = R/T, donde TC: tasa de crecimiento promedio estacional (kg MS ha⁻¹ d⁻¹), R: rendimiento estacional (kg MS ha⁻¹) y T: días transcurridos entre cortes.

Altura de la planta

Un día antes de cada corte, la altura de 20 plantas seleccionadas aleatoriamente por densidad y repetición se midió con una regla de madera graduada en cm desde el suelo hasta el componente de mayor altura u hoja bandera.

Relación hoja:tallo

La relación hoja:tallo fue determinada al dividir el peso seco expresado en kg MS ha⁻¹ de la hoja entre peso del tallo, obtenidos de la submuestra utilizada para estimar el rendimiento de forraje.

Radiación interceptada

Para medir la radiación interceptada (%), un día previo al corte se realizaron cinco lecturas instantáneas al azar en

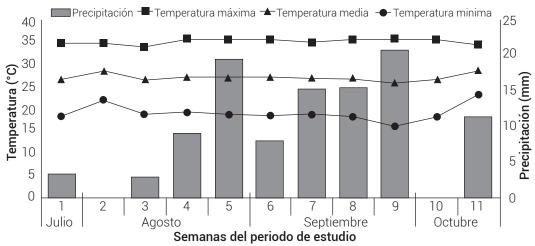


Figura 1. Precipitación acumulada semanal, temperatura máxima, media y mínima registradas durante el experimento.

cada parcela experimental; en sentido trasversal al surco se midieron los cm de sombra que proyectaba sobre una regla graduada de 100 cm colocada en la superficie del suelo entre los surcos debajo del dosel vegetal a las 13:00 horas.

Composición morfológica

Para determinar la composición morfológica, de la muestra obtenida del rendimiento de forraje, se tomó una submuestra de 20 % y se separó en sus componentes morfológicos: tallo, hoja, flor y vaina. Se pesó cada componente, se colocó dentro de bolsas de papel y se secó en una estufa eléctrica (Riossa® HCF32D, México) a una temperatura de 60 °C hasta peso constante.

Diseño experimental y análisis estadístico

Los datos se analizaron mediante un diseño de bloques completos al azar con tres repeticiones. Se utilizó el procedimiento GLM del programa SAS versión 9.2 (SAS Institute, 2011), y la comparación múltiple de medias de los tratamientos se realizó mediante la prueba de Tukey (P \leq 0.05).

RESULTADOS Y DISCUSIÓN

El rendimiento forrajero fue diferente ($P \le 0.05$), de acuerdo con la densidad de población y la edad al corte. La producción de forraje incrementó en promedio 11 % al aumentar la densidad de población. Se observó un crecimiento acelerado a partir de la evaluación del día 30 hasta el día 60 (Figura 2). Independientemente de la edad de corte, la producción de forraje fue superior cuando la población fue a altas densidades (250,000 y 125,000 plantas ha-1) a partir del corte a 60 días, con un promedio de

5500 kg MS ha⁻¹, mientras que disminuyó en las densidades menores (62,500 y 41,250 plantas ha⁻¹), con un promedio de 4300 kg MS ha⁻¹ ($P \le 0.05$). El rendimiento tendió a disminuir en la densidad de 41,250 plantas ha⁻¹ en la edad al corte de 68 días, con un promedio de 3,440 kg MS ha⁻¹ ($P \le 0.05$).

Estudios realizados en soya sembrada en clima mediterráneo (Acikgoz et al., 2007) mostraron un efecto positivo en el rendimiento al incrementar la densidad de siembra de 50 a 200 kg de semilla ha-1; sin embargo, los rendimientos obtenidos fueron superiores, oscilando entre los 6801 y 7394 kg MS ha-1 en comparación con los reportados en esta investigación. Resultados similares fueron observados por Gan et al. (2002), quienes reportaron que la producción de forraje aumentó en 72 % al incrementar al doble la densidad de plantas. En otra investigación, al evaluar 10 genotipos de soya en el trópico seco venezolano, en estado de desarrollo R6 y densidad de 15 plantas por metro lineal, Hernández et al. (2013) reportaron una producción promedio de 10,888 kg MS ha-1. La diferencia entre el rendimiento y densidades puede ser atribuida a la competencia inter-específica por nutrientes y luz, principalmente (Mattera et al., 2013), mientras que la menor producción forrajera obtenida, en comparación con otras investigaciones, posiblemente depende de la distancia entre surcos (Acikgoz et al., 2007; Sheaffer et al., 2001), además del genotipo utilizado (Gan et al., 2002; Reta et al., 2013), aunado a las condiciones de clima y suelo (Tobía et al., 2006).

La densidad de 250,000 y 125,000 plantas ha⁻¹ presentaron la mayor tasa de crecimiento, independientemente de la edad al corte ($P \le 0.05$); en estas densidades, los valores mayores se obtuvieron entre los días 38 y 52, análogo a lo obtenido entre los 60 y 75 días en la densidad de 125,000 plantas ha⁻¹.

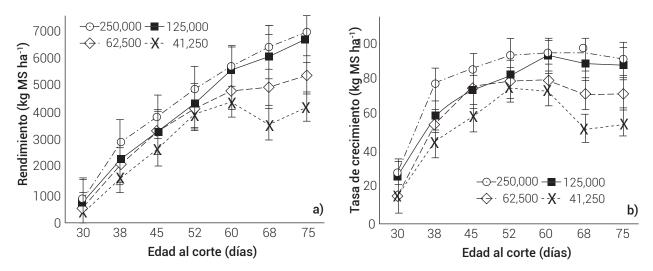


Figura 2. Rendimiento de forraje (a) y tasa de crecimiento (b) de soya [Glycine max (L.) Merr.] variedad Salcer a diferente densidad de población y edad de corte.

La tasa de crecimiento es el reflejo inmediato del rendimiento, la similitud en comportamiento entre estas dos variables es debida a que ésta es el resultado de dividir los valores de producción de materia seca entre los días al corte; el incremento en la acumulación de materia seca conforme avanza el tiempo es la causa del crecimiento del tejido vegetal al utilizar eficientemente la energía que incide sobre el área foliar (Warren, 1981), mientras que las diferencias entre densidades están íntimamente relacionadas con la competencia entre plantas, lo que afecta el crecimiento, siendo mayor la competencia en altas densidades. Escalante-Estrada et al. (2014) evaluaron la tasa de crecimiento en función del nitrógeno durante el crecimiento del cultivo de frijol y encontraron que ésta fue superior durante las primeras etapas de desarrollo, hasta alcanzar un máximo de acumulación de reservas; posteriormente, aunque puede haber incrementos, existe translocación de MS a los órganos reproductivos y de almacenamiento.

Para la altura de planta no se encontraron diferencias entre densidades (P > 0.05), pero sí entre las edades de corte (P ≤ 0.05), lo que indica que la altura de la planta aumenta conforme avanza la edad de rebrote. La altura mayor se observó predominantemente a partir de los días 60, 68 y 75 después de la siembra, con un promedio de 72.5 cm, mientras que la menor fue a los 30 días con 29 cm, independientemente de la densidad de población (Cuadro 1).

Los valores reportados en este estudio para la altura de planta fueron menores que los reportaron en estudios previos (Acikgoz et al., 2007; Hernández et al., 2013), quienes reportaron alturas de 67 a 88 cm para diversos cultivares de soya. Board (2000) encontró un efecto positivo en la altura de planta de soya Delta Pine 3606

conforme incrementó la densidad de población, desde 77 cm en la densidad de 80,000 plantas ha⁻¹ hasta 103 cm cuando la densidad fue de 390,000 plantas ha⁻¹.

En la Figura 2 se muestra la relación hoja:tallo de la soya a diferentes densidades de población y días al corte. Se obtuvo mayor relación hoja:tallo en las densidades de 250,000, 125,000 y 62,500 plantas ha-1, con 1.33, 1.27 y 1.18, respectivamente, y menor en la densidad de 41,250 plantas ha-1 con 1.05 (P > 0.05). Se observó una disminución de la relación hoja:tallo conforme incrementó la edad al corte en las densidades de población evaluadas, se obtuvieron valores superiores a la unidad entre los días 30 y 52, y para el día 60 el índice de relación hoja:tallo disminuyó a un valor inferior para las cuatro densidades, causado por el inicio de la floración.

Este comportamiento en la relación hoja:tallo también se ha reportado en *Cratylia argentea y Crotalaria juncea* (Sosa *et al.*, 2008) y alfalfa (Rojas *et al.*, 2019), con un promedio de 1.2, 1.86 y 0.60, respectivamente, en función del intervalo de corte, época del año y temperatura. En esta investigación, el índice de relación hoja:tallo más bajo correspondió a la densidad menor y está asociado con el engrosamiento del diámetro del tallo principal y aparición de ramas secundarias como respuesta a la distancia entre plantas, lo que contribuyen al cociente del índice calculado; sin embargo, la capacidad compensatoria de la soya al manejo agronómico resultó en ausencia de diferencias estadísticas entre las densidades evaluadas (Tobía *et al.*, 2006), que también tuvieron efecto sobre la composición morfológica del cultivo.

En el Cuadro 2 se observa la radiación interceptada por el dosel vegetal de soya al variar las densidades de población

Cuadro 1. Altura de planta (cm) de soya (*G. max* L.) variedad Salcer sembrada en el trópico seco, a diferentes densidades de población y edad de corte.

Densidad (Plantas ha ⁻¹)	Edad al corte (días)							
	30	38	45	52	60	68	75	- Promedio
250,000	28Ce	39Bd	55ABc	61Bb	71Ba	72ABa	71Ba	57 A
125,000	27Ce	40Bd	56Ac	60Bb	70Ba	71Ba	72Aba	57 A
62,500	29Be	43Ad	54Bc	61Bb	72ABa	72ABa	72Aba	58 A
41,250	30Ae	42Ad	57Ac	63Ab	74Aa	74Aa	75Aa	59 A
Promedio	29d	41c	56b	61b	72a	72a	73a	

Medias con la misma literal minúscula en una misma hilera no son diferentes estadísticamente (Tukey, $P \le 0.05$), medias con la misma literal mayúscula en una misma columna no son diferentes estadísticamente (Tukey, $P \le 0.05$).

Cuadro 2. Radiación interceptada (%) de soya (G. max L.) variedad Salcer a diferentes densidades de población y edad al corte.

Densidad _ (plantas ha ⁻¹)	Edad al corte (días)							
	30	38	45	52	60	68	75	Promedio
250,000	12Ae	29Ad	53Ac	86Aa	86Aa	82Aab	78Ab	61A
125,000	13Ae	29Ad	47Ac	72Bb	85Aa	83Aa	74Ab	58B
62,500	14Ad	29Ac	50Ab	72Ba	78Ba	78Aa	74Aa	56B
41,250	9Bd	31Ac	50Ab	77Ba	77Ba	76Aa	74Aa	56B
Promedio	12e	30d	50c	77b	82a	80a	75b	

Medias con la misma literal minúscula en una misma hilera no son diferentes estadísticamente (Tukey, $P \le 0.05$), medias con la misma literal mayúscula en una misma columna no son diferentes estadísticamente (Tukey, $P \le 0.05$).

y edades al corte. La radiación interceptada es una medida que ayuda a detectar el momento óptimo de cosecha, pudiendo ser éste cuando se obtiene el 95 % de radiación, debido a que se relaciona con los mejores atributos de calidad y cantidad de forraje (Maldonado-Peralta et al., 2019; Rojas-García et al., 2018). En este cultivo se observó un incremento acelerado en la intercepción de la luz partir del día 30 al 52, o al 68, dependiendo de la densidad de población, siendo 82 % el valor máximo para posteriormente disminuir hasta el término del estudio (P \leq 0.05).

La densidad de 250,000 y 125,000 plantas ha⁻¹ mostro el mayor valor de radiación interceptada, con 85.5 % a los 60 días de crecimiento (P ≤ 0.05), este valor fue menor a lo reportado al sembrar soya a una densidad de 300,000 plantas ha⁻¹ y cosechar el forraje en un estado fenológico R5, durante dos años de cultivo consecutivos (Board, 2000), y a lo obtenido al evaluarla en cuatro genotipos distintos (Girón et al., 2016). Por su parte, Pengelly et al. (1999) consignaron que el cultivo de soya interceptó 80 % de la radiación a los 49 días hasta alcanzar 95 % entre los 80 y 100 días, diferencia atribuida al manejo de la parcela durante los diferentes estudios, principalmente la distancia

entre surcos (Mattera et al., 2013).

La proporción de los componentes tallo, hoja, flor y fruto fue diferente (P ≤ 0.05) entre densidades y momentos del corte. Entre el día 60 y 68 se obtuvo 48 %, y la menor cantidad fue a los 30 días, con 35 % de tallo (Figura 3). El componente hoja disminuyó conforme aumentó la edad del forraje. En todas las densidades de población fue mayor en el día 30 de desarrollo, alcanzando un 65 % y menor en el día 75, con 22 %. La aparición de flores en el forraje fue a partir del día 52, con 1.9 %, e incrementó con la edad, alcanzando 5.6 %. La menor y mayor fracción de flor fue en la densidad de 250,000 plantas ha-1. Por último, los frutos de soya forrajera aparecieron una semana posterior a la floración, correspondiente al día 60, alcanzando la mayor cantidad de vainas a los 75 días de edad. El comportamiento de la composición morfológica en el cultivo de soya entre las densidades de 62,500 y 41,250 plantas ha⁻¹ fue similar (Figura 4).

Hintz y Albrecht (1994), al evaluar el efecto de la densidad de población en soya de 280,000 y 890,000 plantas ha⁻¹, cultivada en espacio entre surcos de 20 y 75 cm y estados de madurez al corte de R1, R3, R5 y R7, sobre la repartición

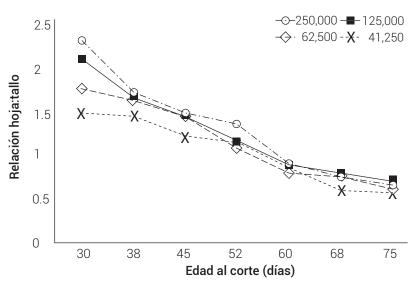


Figura 3. Relación hoja:tallo de soya [G. max (L.) Merr.] variedad Salcer a diferente densidad de población y edad al corte.

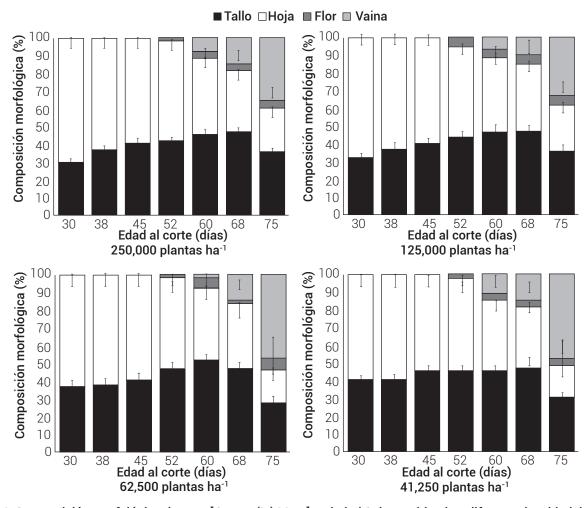


Figura 4. Composición morfológica de soya [G. max (L.) Merr.] variedad Salcer cultivada a diferente densidad de población y edad al corte.

en materia seca de los componentes morfológicos en tres variedades de soya, consignaron que la fracción hoja disminuyó conforme avanzaron los estadios reproductivos, de 708 g kg⁻¹ en R1 a 168 g kg⁻¹ en R7, mientras que la cantidad de tallos aumentó, alcanzando el máximo valor en R5, y posteriormente disminuyó a causa de la aparición de flores y frutos, ocurriendo la formación de vaina en la etapa de madurez R5, comportamiento igual que lo reportado en este estudio. Varios investigadores (Acikgoz et al., 2007; Hintz y Albrecht, 1994) mencionaron que el efecto de la densidad de población es de mínima magnitud en los componentes vegetales hoja y tallo de la planta.

CONCLUSIONES

La menor floración y la mayor radiación interceptada se obtiene al incrementar la densidad de población y la edad al corte, mismas que determinan el rendimiento de forraje en soya forrajera. Para la producción de forraje de soya en el trópico seco mexicano se recomienda aplicar el corte entre el día 52 y 60 en las densidades de 250,000 y 125,000 plantas ha-1; no obstante, es necesario incluir en investigaciones posteriores la evaluación de la composición química y digestibilidad de la planta con la finalidad de contribuir a determinar de manera más precisa la densidad y edad de corte.

BIBLIOGRAFÍA

- Acikgoz E., M. Sincik, M. Oz, S. Albayrak, G. Wietgrefe, Z. M. Turan, ... and O. Canbolat (2007) Forage soybean performance in mediterranean environments. *Field Crops Research* 103:239-247, https://doi.org/10.1016/j.fcr.2007.06.006
- Alatorre-Hernández A., J. D. Guerrero-Rodríguez, J. I. Olvera-Hernández, E. Aceves-Ruiz, H. Vaquera-Huerta y S. Vargas L. (2018) Productividad, características fisicoquímicas y digestibilidad in vitro de leguminosas forrajeras en trópico seco de México. Revista Mexicana de Ciencias Pecuarias 9:296-315, https://doi.org/10.22319/rmcp.v9i2.4361
- Asekova S., J. G. Shannon and J. D. Lee (2014) The current status of forage soybean. *Plant Breeding and Biotechnology* 2:334-341, https://doi.org/10.9787/pbb.2014.2.4.334
- Azzaz H. H., E. S. A. Farahat, T. A. Morsy, H. A. Aziz, F. I. Hadhoud and M. S. Abd-Alla (2016) Moringa oleifera and Echinacea purpurea as supplements for Rhamani lactating ewe's diets and their effect on rumen characteristics, nutrients digestibility, blood parameters, milk production, composition and its fatty acid profile. Asian Journal of Animal and Veterinary Advances 11:684-692, https://doi.org/10.3923/ajava.2016.684.692
- Board J. (2000) Light interception efficiency and light quality affect yield compensation of soybean at low plant populations. Crop Science 40:1285-1294, https://doi.org/10.2135/cropsci2000.4051285x
- Burbano-Erazo E., J. E. Mojica-Rodríguez, G. A. Brochero-Aldana, J. L. Cardona-Iglesias y E. Castro-Rincón (2019) Producción de forraje en leguminosas tropicales, en el Caribe seco colombiano. *Pastos y Forrajes* 42:143-151.
- Castro-Montoya J., R. Gownipuram, M. Mendoza, N. Solano, F. López, U. Dickhöfer and E. E. Corea (2019) Effects of feeding tropical forage legumes on nutrients digestibility, nitrogen partitioning and performance of crossbred milking cows. *Animal Feed Science and Technology* 247:32-40, https://doi.org/10.1016/j.

- anifeedsci.2018.10.017
- Cruz L. A., U. Álvarez H., H. Grillo R., R. A. Ortega C. y M. Cárdenas M. (2016) Entomofauna asociada a la soya [Glycine max (L.) Merr.] en sistemas de siembra directa y convencional. *Centro Agrícola* 43:77-84.
- Enríquez Q. J. F. y A. R. Quero C. (2006) Producción de Semillas de Gramíneas y Leguminosas Forrajeras Tropicales. Libro Técnico No. 11. Campo Experimental Cotaxtla, INIFAP. Medellín, Veracruz. 109 p, https://doi.org/10.13140/2.1.4622.3686
- Escalante-Estrada J. A. S., M. T. Rodríguez-González y Y. I. Escalante-Estrada (2014) Tasa de crecimiento de biomasa y rendimiento de frijol en función del nitrógeno. *Ciencia y Tecnología Agropecuaria de México* 2:1-8.
- Fraile M. E., M. D. García-Suárez, A. Martínez-Bernal y R. Slomianski (2007) Nutritivas y apetecibles: conozca de leguminosas comestibles. Parte I. Hojas, vainas y semillas. *ContactoS* 66:27-35.
- Gan Y., I. Stulen, H. van Keulen and P. J. C. Kuiper (2002) Physiological response of soybean genotypes to plant density. Field Crops Research 74:231-241, https://doi.org/10.1016/S0378-4290(01)00212-X
- García E. (2004) Modificaciones al Sistema de Clasificación Climática de Köppen. 4a edición. Instituto de Geografía, Universidad Nacional Autónoma de México. México, D. F. 90 p.
- Garduza-Acosta B., L. C. Lagunes-Espinoza, C. C. Bautista-Muñoz, G. García-de-los-Santos, J. M. Zaldívar-Cruz and A. Hernández-Flores (2020) Germination of Crotalaria and Lupinus (Fabaceae) seeds submitted to different pre-germination treatments and their effect on enzymatic activity during early germination. Brazilian Journal of Biology 80:23-29, https://doi.org/10.1590/1519-6984.185813
- Girón P., W. Miranda, M. Barraco y A. Lardone (2016) Evaluación de distintas fechas de siembra de soja en función de grupos de madurez y espaciamiento entre hileras. Estación Experimental Agropecuaria General Villegas, INTA 1:43-48.
- González A. M., B. de la Mora V., M. Á. Alonso D., E. Castillo G., E. Ocaña Z. and J. Jarillo R. (2012) Effect of grazing *Cratylia argentea* associated with *Brachiaria brizantha* Toledo on quality pasture and weight gain in Holstein × Zebu heifers. *Tropical and Subtropical Agroecosystems* 15:1-11.
- Gulwa U., N. Mgujulva and S. T. Beyen (2018) Benefits of grass-legume inter-cropping in livestock systems. *African Journal of Agricultural Research* 13:1311-1319, https://doi.org/10.5897/ajar2018.13172
- Hernández A., R. Guerra, C. Tobía y E. Villalobos (2013) Evaluación del potencial forrajero de diez cultivares de soya (*Glycine max* (L) Merr) en Venezuela. Agronomía Costarricense 37:45-54, https://doi.org/10.15517/rac.v37i2.12761
- Hintz W. R and K. A. Albrecht (1994) Dry matter partitioning and forage nutritive value of soybean plant components. *Agronomy Journal* 86:59-62, https://doi.org/10.2134/agronj1994.000219 62008600010011x
- Kim E., S. Hwang and I. Lee (2016) SoyNet: a database of co-functional networks for soybean *Glycine max. Nucleic Acids Research* 45:D1082-D1089, https://doi.org/10.1093/nar/gkw704
- Liew L. C., M. B. Singh and P. L. Bhalla (2014) Unique and conserved features of floral evocation in legumes. *Journal of Integrative Plant Biology* 56:714-728, https://doi.org/10.1111/jipb.12187
- Maldonado-Peralta M. Á., A. R. Rojas-García, P. Sánchez-Santillán, M. B. Bottini-Luzardo, N. TorresSalado, J. Ventura-Ríos, ... and M. J. Luna-Guerrero (2019) Análisis de crecimiento del pasto Cuba OM-22 (Pennisetum purpureum × Pennisetum glaucum) en el trópico seco. Agroproductividad 12:17-22, https://doi.org/https://doi.org/10.32854/agrop.v0i0.1445
- Mattera J., L. A. Romero, A. L. Cuatrín, P. S. Cornaglia and A. A. Grimoldi (2013) Yield components, light interception and radiation use efficiency of lucerne (*Medicago sativa* L.) in response to row spacing. *European Journal of Agronomy* 45:87-95, https://doi.org/10.1016/j.eja.2012.10.008
- Novelli L. E., O. P. Caviglia and R. J. M. Melchiori (2011) Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols. Geoderma 167:254-260, https://doi.org/10.1016/j. geoderma.2011.09.015
- Pengelly B. C., F. P. C. Blamey and R. C. Muchow (1999) Radiation

- interception and the accumulation of biomass and nitrogen by soybean and three tropical annual forage legumes. *Field Crops Research* 63:99-112, https://doi.org/10.1016/S0378-4290(99)00029-5
- Pratap A., A. Das, S. Kumar and S. Gupta (2021) Current perspectives on introgression breeding in food legumes. Frontiers in Plant Science 11:589189, https://doi.org/10.3389/fpls.2020.589189
- Reta S. D. G., P. C. Castellanos G., J. Olague R., H. M. Quiroga G., J. S. Serrato C. y A. Gaytán M. (2013) Potencial forrajero de cuatro especies leguminosas en el ciclo de verano en la Comarca Lagunera. Revista Mexicana de Ciencias Agrícolas 4:659-671, https://doi. org/10.29312/remexca.v4i5.1166
- Reyes S. N., R. Rodríguez, B. Mendieta A., L. Mejía S. y A. P. Mora T. (2012) Efecto de la suplementación con Moringa oleifera sobre el comportamiento productivo de ovino alimentados con una dieta basal de pasto Guinea (Panicum maximun Jacq.). La Calera 9:60-69.
- Rojas G. A. R., S. I. Mendoza P., M. Á. Maldonado P., P. Álvarez V., N. Torres S., A. Cruz H., ... y S. Joaquín C. (2019) Rendimiento de forraje y valor nutritivo de alfalfa a diferentes intervalos de corte. Revista Mexicana de Ciencias Agrícolas 10:849-858, https://doi.org/10.29312/remexca.v10i4.1695
- Rojas-García A. R., N. Torres-Salado, M. Á. Maldonado-Peralta, P. Sánchez-Santillán, A. García-Balbuena, S. I. Mendoza-Pedroza, ... y A. Hernández-Garay (2018) Curva de crecimiento y calidad del pasto Cobra (Brachiaria hibrido BR02/1794) a dos intensidades de corte. Agroproductividad 11:34-38.
- SAS Institute (2011) The SAS 9.2 for Windows. SAS Institute Inc. Cary, North Carolina, USA. 1848 p.

- Schultze-Kraft R., I. M. Rao, M. Peters, R. J. Clements, C. Bai and G. Liu (2018) Tropical forage legumes for environmental benefits: an overview. *Tropical Grasslands-Forrajes Tropicales* 6:1-14, https://doi.org/10.17138/TGFT(6)1-14
- Sheaffer C. C., H. J. Orf, E. T. Devine and G. J. Jewett (2001) Yield and quality of forage soybean. *Agronomy Journal* 93:99-106, https://doi.org/10.2134/agronj2001.93199x
- Sosa R. E. E., E. Cabrera T., D. Pérez R. y L. Ortega R. (2008) Producción estacional de materia seca de gramíneas y leguminosas forrajeras con cortes en el estado de Quintana Roo. *Técnica Pecuaria en México* 46:413-426, https://doi.org/10.22319/ rmcp.v46i4.1795
- Tobía C. y E. Villalobos (2004) Producción y valor nutricional del forraje de soya en condiciones tropicales adversas. *Agronomía Costarricense* 28:17-25.
- Tobía C., E. Villalobos y E. Rico (2006) Uso de forraje de soya (*Glycine max* L. Merr.) variedad CIGRAS 06 en la nutrición de los rumiantes. X Seminario de Pastos y Forrajes en Sistemas de Producción Animal, 20-22 de abril de 2006. Universidad de Zulia. Maracaibo, Venezuela. pp:77-86.
- Torres-Salado N., O. D. García-Raymundo, M. A. Maldonado-Peralta, A. R. Rojas-García, M. A. Ayala-Monter and P. Sánchez-Santillán (2020) Productive behavior of sheep fed with soy (*Glycine max* L.) forage. *Agroproductividad* 13:63-67, https://doi.org/10.32854/agrop.v13i12.1893
- Warren W. J. (1981) Analysis of growth, photosynthesis and light interception for single plants and stands. *Annals of Botany* 48:507-512, https://doi.org/10.1093/oxfordjournals.aob. a086154