ARTICULOS

PRUEBAS DE CALIDAD EN SEMILLAS DE CHICHARO (Pisum sativum L.) Y SU UTILIDAD COMO INDICADORES DEL POTENCIAL DE EMERGENCIA¹

Leticia A. Bustamante García² y Ronal Don³

RESUMEN

La prueba standard de germinación no es suficiente para predecir la emergencia en el campo bajo condiciones adversas, requiriéndose de una prueba adicional de calidad (vigor) capaz de medir el potencial de emergencia de semillas agrícolas. Nueve lotes de semilla de chícharo (Pisum sativum L.), sin tratamiento protectivo, se evaluaron mediante 12 diferentes pruebas de calidad. Las pruebas se compararon por su reproducibilidad, habilidad de identificar diferencias entre lotes y su utilidad como indicadores del potencial de emergencia en el campo. Aspectos analíticos, bioquímicos, fisio lógicos, fisiológicos de estrés y de sanidad, fue ron examinados con las diferentes pruebas. Algunas pruebas permitieron una diferenciación más amplia entre los lotes de semilla y generalmente con las pruebas en las que se utilizaron condiciones de estrés la diferenciación fue mayor que con las pruebas meramente fisiológicas. De acuerdo con los resultados, ninguna prueba de laboratorio pue de, por sí sola, detectar todos los factores que afectan la emergencia de este cultivo en el campo, indicando que posiblemente sea necesaria más de una prueba para una evaluación completa de la calidad.

PALABRAS CLAVE ADICIONALES

Vigor de semillas, Germinación, Cavidad de semilla

SUMMARY

The standard germination test by itself is not enough to predict seedling emergence under adverse field conditions, so additional seed quality tests are required to measure seedling emergence potential. Nine seed lots of pea (Pisum sativum L.) without seed treatment, were evaluated under 12 seed quality tests. Tests were compared according to its reproductibility, its ability to detect differences among lots, and its usefulness as criteria for screening for

1 Trabajo realizado en la Official Seed Testing Station for Scotland como parte de la tesis del primer autor para la obtención del grado de Maestría en Tecnología de Semi llas. seedling emergence potential under field conditions. Data related with biochemical, physiological, analytical, and seed sanity characteristics, as well as physiological responses under stress conditions, was collected and evaluated. Some tests allowed greater differentiation among lots than others, particularly those performed under stress conditions. Results indicated that no single lab test was able to include all the factors affecting seedling emergence under field conditions; thus, two or more tests are necessary to performe a complete seed quality evaluation.

ADDITIONAL INDEX WORDS

Seed vigour, Germination, Hollowheart.

INTRODUCCION

La importancia del cultivo del chícharo en muchos países, origina una demanda de semilla de buena cali dad, pues es extremadamente difícil de lograr el establecimiento de adecuadas poblaciones de plantas en el campo. Factores como porcentaje de germinación, vi gor, tamaño y sanidad de la semilla influyen en las densidades de siembra, y las pérdidas de población va rían de acuerdo a la época de siembra; así, en el caso de siembras tempranas, bajo condiciones frías y húmedas del suelo y del clima, comúnmente se observan fallas en las semillas de algunos lotes, aun cuando su germinación en el laboratorio sea satisfactoria. Esto indica que la capacidad de germinación en el la boratorio no refleja el potencial de emergencia en condiciones adversas, definiéndose esta situación como un problema de vigor, caracter para el cual existe gran variación en este cultivo (Perry, 1967).

Puesto que el factor vigor debe ser considerado, se requiere de pruebas adicionales de laboratorio que lo evalúen para predecir la emergencia en el campo, bajo condiciones óptimas y adversas. El objetivo del presente trabajo es describir métodos para diferentes pruebas de calidad en semilla de chícharo; in dicar sus niveles de reproducibilidad, evaluar su habilidad para detectar diferencias entre lotes, y su utilidad como indicadores del potencial de emergencia en el campo.

Maestro-Investigador de la Universidad Autónoma Agraria Antonio Narro, Centro de Capacitación y Desarrollo en Tecnología de Semillas. 25315, Buenavista, Saltillo, Coah.

³ Profesor Investigador de la Official Seed Testing Station for Scotland.

REVISION DE LITERATURA

Los valores que se obtienen de la prueba de germinación en el laboratorio generalmente son más altos que los de emergencia. Brett et al. (1973) encontraron que la emergencia en el campo era apro ximadamente 60% del valor de germinación en el laboratorio, mientras Schoorel (1956) concluye que una germinación de 80% en el laboratorio debería asegurar un 50% de emergencia. En el cultivo de chícharo se han observado discrepancias entre la capacidad de germinación y la emergencia de plántulas (Wellington, 1962; Matthews y Bradnock, 1967); estas discrepancias se han atribuído a una interacción entre las condiciones ambientales del suelo y el vigor de la semilla (Heydecker, 1960). Cuando la semilla de chícharo se siembra en suelos fríos y húmedos los valores altos de germina ción en el laboratorio no garantizan un nivel de emergencia satisfactorio (Matthews y Bradnock, 1968; Mackay, 1972; Gane y Biddle, 1978).

La emergencia de semilla de chícharo en el campo no sólo depende de su capacidad de germina ción sino también de su vigor (Isely, 1957; Heydecker, 1965). El vigor de la semilla no es una propiedad simple, medible como la germinación, sino un atributo que describe varias caracterís ticas que están asociadas con diferentes aspectos del comportamiento de las semillas germinadas y plántulas subsecuentes (Perry, 1978). El vigor denota la habilidad de los lotes de semilla para emerger en el campo, y aunque no se puede lograr una predicción absoluta de la eme<u>r</u> gencia (Heydecker, 1969), es posible, mediante pruebas de vigor, obtener un espectro de calidad más útil, de diferentes lotes, que el que se obtiene con las pruebas convencionales de germinación. Se han propuesto numerosas pruebas de vigor (Heydecker, 1969; Woodstock, 1973; McDonald, 1975); aunque para considerarse de va lor práctico, una prueba debe ser barata, senci lla, rápida, objetiva y reproducible (McDonald, 1975); además, debe proporcionar un resultado más relacionado con el comportamiento de las se millas en el campo que el que provee la prueba de germinación (Perry, 1981).

Entre las diferentes pruebas que han sido

desarrolladas para identificar lotes de semilla de chícharo sujetos a fallas en el campo, destacan la prueba de conductividad eléctrica (Matthews v Bradnock, 1967; 1968) y la prueba de "hollow heart" (cavidad de la semilla) (Myers, 1947; Perry y Howell, 1965; Heydecker v Feast, 1969). En el primer caso. existe una correlación negativa entre la conductivi dad del agua en la que se remojan semillas de chícharo y la emergencia de plántulas (Matthews y Bradnock, 1968), distinguiendo esta prueba, alto y bajo vigor que no se observa en la prueba de germinación. En el segundo caso, la presencia de "hollow heart" puede estar asociada con fallas en la emergencia (Biddle y Matthews, 1978), y como la inciden cia de "hollow heart" y conductividad eléctrica alta pueden ocurrir en forma independiente en lotes de semilla de chícharo, es aconsejable realizar ambas evaluaciones (PGRO, 1972).

Don et al. (1984) encontraron que la incidencia de cavidades en semillas de chícharo está relacionada con la presencia de tejido deteriorado, el cual puede ser detectado en el centro de los cotiledones en la superficie adaxial.

La condición de sanidad de los lotes de semilla de chícharo puede también influenciar su emergencia en el campo. Wellington (1962) y De Tempe (1968) encontraron que la infección de Ascochyta spp producía una marcada reducción en la emergencia.

MATERIALES Y METODOS

Semilla

Se utilizaron nueve muestras de diferentes lotes de semilla beneficiada sin tratar, variedad Puget, disponible para venta en el ciclo 1981 en Gran Bretaña y proporcionadas por Charles Sharpe and Co. Ltd., Sleaford, Inglaterra. Estas se mantuvieron almacenadas en envases de algodón entre 15 y 18°C, y a intervalos regulares se tomaron las muestras requeridas para las pruebas de laboratorio, las que se realizaron dentro de un período de 3 meses. Durante este tiempo no hubo variación significativa en la media del contenido de humedad de las muestras (10.2%).

REVISTA FITOTECNIA MEXICANA, VOL. 11, 1988

Pruebas de Laboratorio

Mediante un divisor de semillas Pascal se obtuvieron muestras de trabajo de cada lote, en las que se realizaron 12 diferentes pruebas de calidad (Cuadro 1). Estas se repitieron al menos una vez.

Germinación standard

Las pruebas de germinación se llevaron a cabo utilizando el método de toalla de papel (ISTA, 1985), procedimiento adoptado por el Laboratorio Oficial de Semillas para Escocia (Don, 1979). Se utilizaron ocho repeticiones de 50 semillas por lote; en cada prueba, después de incubación a 20±0.5°C y 95±2% de humedad relativa por 6 días, se evaluaron las plántulas clasificándose en normales y anormales (ISTA, 1985). La prueba se realizó tres veces para cada lote.

Evaluación del color

Se examinaron 500 semillas de cada lote separándolas en tres categorías de acuerdo a la varia ción de color: Grado 1, semillas sin coloración (blanco-rosado); Grado 2, semillas verde pálido con manchones blancos-rosados, y Grado 3, semillas completamente verdes. Para cada lote se pesa ron las tres categorías calculándose el porcentaje de cada grado. La prueba se repitió dos veces.

Peso de mil semillas

Se contó el número de semillas en la fracción de semilla pura de cada lote, usando un contador electrónico (Old Mill Seed Co., New York, EUA) y después de pesar se calculó el peso de mil semillas utilizando la ecuación:

 $PMS = \frac{Peso \ de \ la \ semilla \ pura}{Número \ de \ semillas} \times 1000$

Germinación después de estrés

La semilla utilizada en la prueba de conductividad eléctrica fue puesta en germinación después de 24 horas de remojo, utilizando el método standard.

Deterioración controlada

Se determinó el contenido de humedad de cada lote (ISTA, 1985) y se pesaron con exactitud dos repeticiones de 100 semillas cada una, colocándolas en tapas de caja petri, las que se pusieron en cámara de temperatura constante y alta humedad relativa $(20\pm1^{\circ}\text{C}, 95\pm2\%)$.

El incremento en peso requerido para aumentar el contenido de humedad a 20%, se calculó usando la ecuación:

Peso de la semilla = Peso original x $\frac{100-\text{humedad original}}{100-\text{humedad requerida}}$

Para obtener el nivel de humedad deseado, se tomaron datos del peso a intervalos cortos, y una vez que en una repetición se alcanzó dicho nivel, la semilla se introdujo inmediatamente en una bolsa de polietileno calibre 500 de 6x4 cm, la que se selló con calor, y se dejó equilibrar el contenido de humedad den tro de la semilla colocando las bolsas en un incubador a 10±0.5°C por 12 horas. Después de este período las bolsas se colocaron en un baño de agua a 45±0.1°C por 24 horas, sumergiéndose inmediatamente después en agua fría (20±2°C) para reducir su temperatura a la temperatura ambiente. Posteriormente se evaluó la ger minación utilizando el método standard. La prueba se repitió tres veces.

Evaluación de 'hollow heart'

Los análisis para la presencia de "hollow heart" se efectuaron después de cada prueba de germinación. Una vez que las plántulas fueron evaluadas, se removió la testa y se separaron los cotiledones para examinar las superficies internas y observar los síntomas característicos de la presencia de cavidades (Perry y Howell, 1965).

Conductividad eléctrica

Se pesaron dos repeticiones de 50 semillas de cada lote y se colocaron en vasos de precipitado de 500 cc, agregando 200 cc de agua destilada a cada vaso, los cuales fueron cubiertos con tapas de caja petri y colocados en un incubador a 20±0.5°C. Después de 24 horas se midió la conductividad del agua usando un aparato "Portland P. 310" conjuntamente con una celda de platino tipo sumergible (Portland Electronics Ltd., Oldham, Inglaterra). La prueba se repitió tres veces.

Pruebas de tetrazolio

Se colocaron 100 semillas de cada lote en vasos de precipitado de 250 cc, agregando 200 cc de agua destilada. Después de 24 horas de remojo a 20±1°C se lavaron y drenaron las semillas antes de ser cubiertas con una solución de 2, 3, 5 cloruro de trifenil tetrazolio (CTT) al 0.5%. Las semillas en CTT se transfirieron a un incubador sin luz a

Cuadro 1. Clasificación de las pruebas de calidad y vigor utilizadas en la investigación

	Prueba	Tipo	Referencia					
1.	Germinación standard	Fisiológica	ISTA (1985).					
2.	Evaluación del color	Analítica	Basada en el trabajo de Maguire et al. (1973).					
3.	Peso de mil semillas	Analítica	ISTA (1985).					
4.	Germinación después de estrés	Estrés fisiológico	Modificación del método descrito por Matthews y Collins (1973).					
5.	Deterioración controlada	Estrés fisiológico	Modificación del procedi- miento descrito por Ellis y Robert (1980) y adopta- do por Matthews (1980).					
6.	"Hollow heart" después de germinación standard	Fisiológica	Perry y Howell (1965).					
7.	"Hollow heart" después de estrés	Estrés fisiológico	Combinación de 4 y 6.					
8.	"Hollow heart" después de deterioración controlada	Estrés fisiológico	Combinación de 5 y 7.					
9.	Conductividad eléctrica	Bioquímica	Modificación del método des crito por Matthews y Brad- nock (1967).					
10.	Tetrazolio (Tinción exte <u>r</u> na).	Bioquímica	Bustamante (1981).					
11.	Tetrazolio (Tinción inte <u>r</u> na).	Bioquímica	Bustamante (1981).					
12.	Emergencia en el labora- torio; suelo a 10°C	Estrés fisiológico	Modificación de la prueba fría (Isely, 1950).					
13.	Infección de Ascochyta	Prueba de sanidad	ISTA (1976).					
14.	Emergencia en el campo (Siembra del 8/abril/1981)							
15.	Emergencia en el campo (Siembra del 5/agosto/1981)							

30±2°C; después de 3 a 5 horas se eliminó la solución de CTT, las semillas se lavaron completamente y se ca lificaron los diseños de tinción, para lo que se remo vieron las cubiertas de la semilla. La evaluación se hizo clasificando las superficies externas en siete grados de acuerdo al área teñida (Cuadro 2). Se calculó un grado promedio para cada lote.

Después de la clasificación de las superficies externas de los cotiledones, aquéllos de las categorías 1 a 4 se examinaron en sus superficies internas, registrándose el número de semillas con centros teñidos intensamente. Estas pruebas se realizaron dos veces.

Emergencia en el laboratorio

El potencial de emergencia de los lotes se determinó en un suelo arcilloso al 50% de capacidad de campo y $9\pm1^{\circ}$ C. Se sembraron cuatro repeticiones de 25 semillas por cada lote, a 4 cm de profundidad en macetas de plástico de 13 cm, las cuales fueron pesadas. Cada dos días se revisó el peso de éstas y se les agregó agua en forma de aspersión para mantener la capacidad de campo. La emergencia se tomó diariamente por 26 días.

Infección de Ascochyta

Se evaluaron los niveles de Ascochyta en los 9 lotes usando el método del plato de agar (ISTA, 1976);

Cuadro 2. Grados de evaluación de superficies externas teñidas con tetrazolio.

- 1. Completamente teñida
- 2. Manchas pequeñísimas sin teñir
- Manchas sin teñir bien distinguibles pero más de 3/4 del área teñida
- 4. Menos de 3/4 del área, pero más de 1/2 teñida
- 5. Menos de 1/2 del área, pero más de 1/4 teñida
- 6. Menos de 1/4 del área teñida
- 7. Sin teñir

100 semillas de cada lote fueron superficialmente es terilizadas, sumergiéndolas por 10 minutos en una so lución de hipoclorito de sodio (1% de cloro) y colocadas asépticamente en un medio de papa-dextrosagar. Los platos fueron incubados en obscuridad por 3 días a 20±1°C seguidos de 4 días en luz ultravioleta a 20±1°C. Después de incubación, los platos fueron examinados a una amplificación de 50 veces, anotando el número de colonias de Ascochyta. Esta prueba se repitió dos veces.

Emergencia en el campo

El potencial de emergencia en el campo se evaluó mediante dos siembras (8-IV-81 y 5-VIII-81). En cada ocasión se sembraron 4 repeticiones a una profundidad de 4 cm en un suelo arcilloso, regándose cuando fue necesario. La emergencia se tomó regularmente hasta obtenerse el máximo de plántulas.

Análisis Estadístico

Para el análisis estadístico, que consistió en análisis de varianza, comparaciones de medias y análisis de correlación para las distintas variables, se usó el programa Genstant V Mark 4-0 (Copyright 1977, Lawes Agricultural Trust, Rothamsted Experimental Station, Inglaterra) y las facilidades de computadora y operación de la Unidad Estadística del Centro Agrícola de Investigación de Edimburgo.

RESULTADOS

El resumen de los resultados que se presenta en el Cuadro 3, permite resaltar los siguientes aspectos:

Reproducibilidad

De acuerdo a los análisis de varianza, no $h\underline{u}$ bo diferencias significativas entre repeticiones ni entre las medias que resultaron de las veces

en que se repitió cada prueba.

Diferencias entre Lotes

Todas las pruebas detectaron diferencias significativas entre los lotes de semilla, y con excepción de la prueba de Ascochyta, que fue significativa al 5% las demás fueron significativas al 0.1%.

Algunas pruebas permitieron una diferenciación más amplia entre los lotes de semilla que otras, y generalmente las pruebas que utilizaron condiciones de estrés dieron lugar a mayor diferenciación que las pruebas meramente fisiológicas. Por ejemplo, la diferencia entre el resultado más alto y el más bajo en la prueba standard de germinación fue 16.9%; cuando se hizo posterior al estrés en agua la diferencia fue 39.7%, y después de la deterioración controlada fue 46.5%. Los resultados de "hollow heart" fueron afectados en manera similar por el estrés.

Las pruebas analíticas y bioquímicas permitieron una diferenciación substancial entre los lotes de semillas, en tanto que la prueba de sanidad para Ascochyta sólo diferenció los nueve lotes de semilla en dos grupos. Un grupo tuvo niveles de infección menores que el 5% mientras que el otro grupo tuvo niveles de infección mayores de 12%.

Interrelaciones de las Pruebas

Al examinar los coeficientes de correlación (Cuadro 4) se observa que en ningún caso los resultados dos de una prueba correlacionan con los resultados de todas las demás; en el caso particular de la prueba 3 (peso de mil semillas), no hubo correlación significativa con los resultados de ninguna otra prueba. Tampoco hay un patrón claro de las correlaciones obtenidas; pero el porcentaje de emergencia en el laboratorio, la germinación después de estrés en agua, la deterioración controlada y los niveles de Ascochyta parecen dar las mejores correlaciones con los valores de emergencia en el campo.

DISCUSION

Germinación, pureza y sanidad: tres aspectos de calidad de semilla de reconocida importancia son evaluadas en pruebas de laboratorio en muchas partes del mundo (Perry, 1980). Estas pruebas han permitido identificar lotes de semilla comercial con mayor calidad y se han introducido normas en los programas de certificación para evaluar esos tres aspectos (Perry, 1980). Los lotes de semilla que cumplen con las

Cuadro 3. Resultados de las pruebas de calidad en semillas de chícharo

Prueba	Signi	ficancia 1/		Media	2/			
	Repeticiones	Pruebas	Lotes	y variación	Separación de lotes $\frac{2}{\alpha}$ (Duncan, α = 0.05)			
1. Germinación standard (%)	NS	NS	***	90.6 (82.0-98.9)	6 5 3 8 4 7 0 1 2			
2. Evaluación de color (grado)	-	NS	ste ste ste	2.4 (1.7-2.9)	2 1 0 6 3 4 5 7 8			
3. Peso de mil semillas (g)	-	NS	the the the	200.7 (182.0-218.6)	472035861			
4. Germinación después de estrés (%)	NS	NS	***	78.0 (51.0-90.7)	4 3 0 1 2 6 7 8 5			
5. Germinación después de deterio- ración controlada (%)	NS	NS	ដង់ដ	72.2 (45.5 - 92.0)	3 2 4 1 0 6 8 7 5			
6. "Hollow heart" (%) después de germinación standard	NS	NS	***	2.4 (0.3-13.1)	385274610			
7. "Hollow heart" (%) después de estrés	NS	NS	***	33.9 (17.0-59.3)	5 8 7 4 3 2 6 1 0			
 "Hollow heart" (%) después de deterioración controlada 	NS	NS	***	11.9 (0.3-42.5)	8 4 5 3 7 6 1 2 0			
 Conductividad eléctrica (μmho/g) 	NS	NS	***	21.4 (12.5-36.1)	8 5 7 2 6 3 1 4 0			
10. Tetrazolio (tinción externa) (grado)	-	NS	***	2.28 (1.4-2.9)	285763410			
ll. Tetrazolio (tinción interna) (%)	-	NS	* * *	34.8 (15.0-57.5)	8 7 3 5 4 2 6 1 0			
12. Emergencia en el laboratorio; suelo a 10°C (%)	NS	-	***	48.6 (20.0-80.0)	3 4 1 0 2 6 5 8 7			
13. Infección de Ascochyta	NS	NS	*	3.8 (0-14.5)	0 1 2 4 3 7 6 5 8			
14. Emergencia en el campo (%) en siembra del 8/abril/81	24	-	###	46.6 (14.8-80.0)	1 2 3 4 0 6 7 8 5			
15. Emergencia en el campo (%) en siembra del 5/agosto/81	1!\$	-	र्थंद र्थंद र्थंद	26.3 (6.5-45.5)	3 1 4 2 6 0 7 5 8			

^{1/:} ns = no significativo; *, ** y ***: significativo al 0.05, 0.01 y 0.001, respectivamente.

normas se consideran de alta calidad y se espera de ellas una emergencia satisfactoria en el campo. Cuan do la semilla de chícharo es sembrada bajo condiciones adversas de campo la relación entre la germinación en el laboratorio y el porcentaje de emergencia en el campo puede ser discrepante (Wellington, 1962; Matthews y Bradnock, 1967; Perry, 1967). En el presente estudio, la germinación promedio obtenida bajo condiciones de laboratorio fue 90.6% mientras que la media de emergencia en el campo, de las dos siem bras, fue solamente 36.5% no habiendo correlación significativa entre la germinación standard de laboratorio y la emergencia en el campo. La incapacidad

de la prueba standard de germinación para indicar el potencial de emergencia bajo condiciones adversas, trajo como resultado el desarrollo de las pruebas de vigor (Perry, 1967, 1978).

Las pruebas usadas en esta investigación son una muestra representativa de las principales clases de pruebas descritas por McDonald (1975), habién dose escogido, con base al criterio de Heydecker (1969) y Perry (1978), por ser baratas, relativamente fáciles de realizar en un gran número de muestras y proveer resultados que puedan ser evaluados objetivamente. Se obtuvieron niveles aceptables de reproducibilidad entre las repeticiones y repetición de

^{2/}: Números unidos por la misma línea no son diferentes estadísticamente entre sí (α = 0.01).

Cuadro 4. Matriz de correlaciones entre pruebas de calidad en semillas de chícharo.

	Prueba	Número de prueba														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
١.	Germinación standard	1.0	67*	25	13	31	. 28	. 32	. 69*	. 14	03	. 17	15	. 46	49	18
2.	Evaluación de color		1.0	26	.21	.48	- .39	79*	79*	45	17	71*	. 49	. 61	.69*	.51
3.	Peso de mil semillas			1.0	.50	.26	.02	. 30	05	27	. 01	.40	.08	. 27	.09	.05
4.	Germinación después de estrés				1.0	. 82**	·19	30	16	79*	64	21	.88*	:21	.71*	.78*
5.	Germinación después de deteri ración controlada	0-				1.0	03	36	30	51	42	16	.90**	* .67*	.89**	.91***
6.	''Hollow heart'' después de germinación standard						1.0	.19	. 72**	.70*	.53	. 69	.18	33	.03	.03
7.	"Hollow heart" después de est	rés						1.0	.77*	.47	. 45	.89**	50	47	45	43
8.	''Hollow heart'' después de det ración controlada	erio-							1.0	. 38	.08	.61	22	48	32	14
9.	Conductividad eléctrica									1.0	.88*	* .59	. 72*	62	43	51
10.	. Tetrazolio (tinción externa)										1.0	.53	69*	54	39	55
11.	. Tetrazolio (tinción interna)											1.0	48	47	32	32
12	. Emergencia en el laboratorio												1.0	.69*	.87**	.94**
13.	. Infección de Ascochyta													1.0	.77*	. 76*
14.	. Emergencia en el campo (siembra del 8/abril/81)														1.0	.93**
15	. Emergencia en el campo (siembra del 5/agosto/81)															1.0

^{*, **} y ***: Significativo al 0.05, 0.01 y 0.001, respectivamente.

REVISTA FITOTECNIA MEXICANA, VOL. 11, 1988

pruebas, de tal manera que los métodos descritos <u>po</u> drían ser utilizados como base para estudios posteriores en calidad de semillas.

El valor de emergencia en el campo obtenido de los nueve lotes de semilla parece ser bajo, con una media de 46.6% y una variación de 14.8 a 80.0% en la siembra de abril, y una media de 26.3, con variación entre 6.5 y 45.5% en la siembra de agosto. Desafortunadamente, no se encontraron publicados datos referentes a emergencia en el campo en lotes comerciales de chícharo; sin embargo, en ninguna de las dos épocas de siembra hubo diferencias significativas entre repeticiones y los resultados de emergencia en las dos fechas correlacionaron significativamente una con otra y con la emergencia en el laboratorio en suelo a 10°C y un 50% de capacidad de campo.

Es posible obtener una amplia gama de valores de emergencia de lotes de semilla, dependiendo de la época y el lugar de siembra; cabe señalar que en esta investigación sólo se examinaron nueve lotes de semilla de una misma variedad de chícha ro sembrados en una localidad. Al respecto, Perry (1978) enfatiza que los Valores de emergencia de una siembra en una sola localidad no pueden tomarse como evidencia de que existe un problema de emergencia; indica además, que las siembras que en un sitio muestren una mejor correlación con una prueba de vigor particular que con la prueba de germinación u otra prueba de vigor, son de valor limitado desde el punto de vista de que una tenga alguna ventaja sobre la otra (Perry, 1978).

Es claro que en esta investigación ninguna prueba predijo exactamente la emergencia de los nueve lotes, ya que se obtuvo diferente variación total para los nueve en las dos siembras. Por otro lado, las pruebas de laboratorio revelan aspectos de calidad que interactúan en su contribución a la emergencia de los nueve lotes de semilla; en tanto que los aspectos de calidad determinados en algunas pruebas parecen ser más importantes para algunos de los lotes que para otros.

La prueba de germinación standard fue un indicador deficiente de la emergencia en el campo; así, mientras que la germinación en el laboratorio fue más alta para los lotes 1 y 2, y más baja para los lotes 5 y 6, este patrón fue casi inverso

en los resultados de la prueba de campo. La germinación en el laboratorio después de estrés en agua y deterioración controlada correlacionó significativamente con la emergencia en el campo; los lotes de semilla cuya germinación en el laboratorio fue menos afectada por el estrés, tendieron a emerger mejor en el laboratorio.

No se obtuvo una relación entre los niveles de "hollow heart" medidos después de la prueba de germi nación standard y la emergencia en el campo, lo cual es sorprendente, ya que los niveles de "hollow heart" fueron muy bajos, con una media de 2.4%. Después de estrés, los niveles de "hollow heart" aumentaron subs tancialmente y ambos niveles: después de estrés en aqua y de deterioración controlada, tuvieron un coeficiente de correlación negativo cuando se compararon con emergencia en el campo, y aunque esta correlación no fue significativa, los lotes 5 y 8 que tuvieron dos de los niveles más bajos de "hollow heart" después de estrés tuvieron los niveles más altos de emergencia en el campo: sin embargo. los niveles después del estrés en los lotes 3 y 4 fueron comparativamente bajos pero su emergencia en el campo fue extremadamente pobre. Parece ser que para estos dos lotes la germinación después de estrés fue un mejor indicador de la emergencia en el campo que los niveles de "hollow heart" después de estrés.

Aunque no se obtuvo una correlación significativa entre la prueba de conductividad y la emergencia en el campo, se observó en cambio un coeficiente de correlación negativo; de esta forma los lotes 5 y 8 que tuvieron la más baja conductividad eléctrica mostraron la más alta emergencia en el campo.

La tinción con tetrazolio en las superficies externas de la semilla tuvo una relación significativa con la conductividad eléctrica; las siembras con la más baja conductividad tuvieron las mayores áreas de tejido teñido en sus superficies externas, y el número de semillas con centros teñidos intensamente, observados en la tinción con tetrazolio a las superficies internas, tuvo una relación significativa con los niveles de "hollow heart" encontrados después de estrés. Se obtuvo una correlación significativa entre la emergencia y el color de las semillas; los lotes 5, 7 y 8 de coloración más verde tuvieron los niveles más altos de emergencia. Por lo que respecta al peso de mil semillas, se encontró que no tuvo relación con algún otro valor de labora-

REVISTA FITOTECNIA MEXICANA, VOL.11, 1988

torio o emergencia en el campo.

Aunque Wellington (1962) y De Tempe (1968) han mostrado que la especie de Ascochyta transmitida por semilla puede causar una marcada reducción en la emergencia de plántulas, en el presente trabajo, los dos lotes con los niveles más altos de Ascochyta funcionaron mejor en la mayoría de las pruebas y en las evaluaciones de emergencia. Parece ser que otros factores de calidad, a diferencia de la presencia de Ascochyta, fueron más importantes que éste al de terminar la emergencia del campo, o bien, encubrieron el efecto del hongo.

La emergencia en suelo en el laboratorio pare ce dar la mejor concordancia con los valores de emergencia en el campo, pero desafortunadamente las dificultades en standarizar el medio de la prueba (Isely, 1950) pueden restringir su uso.

Al examinarse los resultados de este estudio se observa una información detallada sobre la calidad de los diferentes lotes de semilla de chícharo y puede encontrarse una explicación para los valores de emergencia de cada uno; sin embargo, sería extremadamente difícil predecir la emergencia usando en forma aislada los resultados de alguna de las pruebas de calidad. Por otro lado, al enfatizarse los resultados complejos que pueden obtenerse de la evaluación de calidad, ello indica que una prueba de laboratorio no puede tomar en cuenta por sí sola todos los factores que afectan la calidad de semi-llas.

CONCLUSIONES

Los resultados de germinación, sanidad, electroconductividad y "hollow heart" empleados conjuntamente como indicadores de la emergencia de chícha ro en Gran Bretaña, no detectaron adecuadamente todas las diferencias que pueden ocurrir entre lotes de semilla, concluyéndose que en algunas circunstancias es necesario realizar pruebas adicionales.

Las pruebas de estrés en agua y deterioración controlada fueron las mejores en predecir la emergencia en campo, aunque ambas necesitan evaluarse en un número mayor de lotes y de condiciones.

La emergencia en el laboratorio a 10°C dió una excelente correlación con la emergencia en el campo, pero se tienen dificultades en su standarización.

Los resultados de la prueba de tinción con tetrazolio en las superficies internas parecen dar una nueva visión en la condición de "hollow heart" (cavidad del cotiledón).

RECONOCIMIENTO

Se agradecen las facilidades otorgadas por la Official Seed Testing Station for Scotland para realizar el presente trabajo, así como el patrocinio del Consejo Británico y el apoyo de la Productora Nacional de Semillas (SARH), CONACYT y UAAAN. La asistencia técnica del Sr. W Rennie y Sra. M. Tomlin y las facilidades del Agricultural Research Council's Unit of Statistics, son igualmente reconocidas.

BIBLIOGRAFIA

- Biddle, J.A. and Matthews, S. 1978. A vigour survey of seed peas available in the UK for 1977. Acta Hort. 83: 125-131.
- Brett, C.C., Dillonweston, W.A.R. and Booer, J.R. 1973. Seed disinfection. III. Experiments of the germination of peas. Agr. Sci. 27: 53-66.
- Bustamante, L.A. 1981. Quality tests for pea (*Pisum sativum*, L.) seed lots and their suitability as indicators of potential field emergence.

 MSc in Seed Technology dissertation. University of Edinburgh.
- De Tempe, J. 1968. An analysis of the laboratory testing requeriments of two seed-borne diseases. Proc. Int. Seed Test. Assoc. 33: 83-588.
- Don, R. 1979. The use of chemicals, particulary giberellic acid, for breaking cereal seed dormancy. Seed Sci. and Technol. 7: 355-367.
- , Bustamante L. A., Rennie W.J. and Seddon M.G. 1984. Hollow heart of pea (Pisum sativum). Seed Sci. and Technol. 12: 707-721.
- Ellis, R.H. and Roberts, E.H. 1980. Towards rational basis for testing seed quality.
 In: Seed Production. Hebblethwaite, P.D. (ed.). Butterworths, London, pp. 605-636.
- Gane, A.J. and Biddle, A.J. 1978. Pea establishment problems. A review. Acta Hort. 72: 121-124.
- Heydecker, W. 1960. Can we measure seedling vigour? Proc. Int. Seed Test. Ass. 25: 498-512.
- ______. 1965. Report of the vigour test committee 1962-1963. Proc. Int. Seed Test. Ass. 30: 369-378.
- _____. 1969. The vigour of seeds, a review. Proc. Int. Seed Test. Ass. 34: 319-328.

REVISTA FITOTECNIA MEXICANA, VOL. 11, 1988

- and Feast. P.M. 1969. Studies of the hollow heart condition of peas (*Pisum sativum*) seeds. Proc. Int. Seed Test. Ass. 34: 319-328.
- International Seed Testing Association. 1976. International rules for seed testing. Seed Sci. and Technol. 4: 3-177.
- _____. 1985. International rules for seed testing. Seed Sci. and Technol. 13:2.
- Isely, D. 1950. The cold test for corn. Proc. Int. Seed Test. Ass. 16: 299-311.
- _____. 1957. Vigor test. Proc. Assoc. Off. Seed Anal. 47: 176-182.
- Mackay, D.B. 1972. The measurement of viability. In: Viability of Seeds. Roberts, E.H. (ed.). Butterworths. London. pp. 172-208.
- . 1978. The laboratory germination test. Acta Hort. 83: 97-102.
- Maguire, J.D., Kropf, J.P., and Steen, K.M. 1973.

 Pea seed viability in relation to bleaching.

 Proc. Assoc. Off. Seed. Anal. 63: 51-58.
- Matthews, S. 1980. Controlled deterioration, a new vigour test for crop seeds. In: Seed Production. Hebblethwaite, P.D. (ed.). Butterworths, London. pp. 647-660.
- and Bradnock, W.T. 1967. The detection of seed samples of wrinkle seeded vining peas of potentially low planting value.

 Proc. Int. Seed Test. Ass. 32: 553-556.
- and . 1968. Relationship between exudation and field emergence in peas and french beans. Hort. Res. 8: 89-93.
- and Collins, M.T. 1973. Laboratory
 measures of field emergence potential
 in barley. Seed Sci. and Technol. 3:
 868-976.
- McDonald Jr., M.B. 1975. A review and evaluation of seed vigour tests. Proc. Assoc. Off. Seed. Anal. 65: 109-137.
- Myers, A. 1947. Hollow heart and abnormal condition of the cotyledons of Pisum sativum.

 J. Aust. Inst. Agr. Sci. 13: 76-77.
- Perry, D.A. 1967. Seed vigour and field establish ment of peas. Proc. Int. Seed Test. Ass. 32:
- . 1978. Report on the vigour test committee. 1974-1977. Seed Sci. and Technol. 6: 1959-1982.
- . 1980. The concept of seed vigour and its relevance to seed production technique.
 In: Seed Production. Hebblethwaite, P.D. (ed.). Butterworths, London, pp. 585-591.

- ____ 1981. Handbook of vigour test methods. ISTA, Zurich Switzerland, 1981.
- and Howell, P.J. 1965. Symptoms and nature of hollow heart in pea seed. Plant. Path. 14: 111-116.
- PGRO, 1972. Seed vigour-dried peas. Ann. Rep. Processors and Growers Research Organization. 1972.
- Schoorel, A.F. 1956. The use of soil test in seed testing. Proc. Int. Seed Test. Ass. 22: 287-301.
- Wellington, P.S. 1962. An analysis of discrepancies between germination capacity and field establishment of peas. J. Nat. Inst. Agr. Bot. 9: 169-179.
- Woodstock, L.W. 1973. Physiological and biochemical tests for seed vigour. Seed Sci. and Technol. 1: 127-157.