EFECTO DE LA FECHA DE SIEMBRA SOBRE LA CALIDAD DE SEMILLA DE TRIGO EN EL BAJÍO , MÉXICO

EFFECT OF THE PLANTING DATE ON THE QUALITY OF WHEAT SEED AT EL BAJIO, MEXICO

Miguel A. Noriega-Carmona¹, Francisco Cervantes-Ortiz¹*, Ernesto Solís-Moya², Enrique Andrio-Enríquez¹, J. Antonio Rangel-Lucio³, Gilberto Rodríguez-Pérez¹, Mariano Mendoza-Elos¹ y J. Guadalupe García-Rodríguez¹

¹Tecnológico Nacional de México-Roque, Celaya, Guanajuato, México. ²Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias. Campo Experimental Bajío, Celaya, Guanajuato, México. ³Tecnológico Nacional de México-Cuidad Victoria, Ciudad Victoria, Tamaulipas, México.

*Autor de correspondencia (frcervantes@itroque.edu.mx)

RESUMEN

La calidad de semilla se considera como un patrón que determina el desempeño en el campo o el nivel de su deterioro durante el almacenamiento; la calidad se utiliza como indicador del valor de la semilla con propósitos específicos, inclusive los relacionados con la distribución y comercialización. El objetivo de la presente investigación fue evaluar la calidad física de semilla y el vigor inicial de plántula derivada de genotipos de trigo (Triticum aestivum L.) influenciados por diferentes fechas de siembra. Se establecieron 36 genotipos de trigo en tres fechas de siembra: 15 de noviembre y 15 de diciembre de 2015, y 15 de enero de 2016 en el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Bajío, localizado en Celaya, Guanajuato, México. Las semillas se sometieron a pruebas analíticas de calidad física como peso volumétrico y biomasa de semilla bajo un diseño experimental completamente aleatorizado; asimismo, se realizó un ensayo en camas de arena bajo condiciones de vivero para evaluar el vigor inicial de plántula a través de velocidad de emergencia, porcentaje de emergencia, biomasa fresca y seca de vástago, altura de plántula e índices de vigor I y II mediante un diseño de bloques completos al azar. Hubo diferencias estadísticas significativas para genotipos y fechas de siembra en los caracteres registrados. La interacción genotipos por fechas de siembra modificó significativamente las características físicas y el vigor de plántula expresado a través de la velocidad de emergencia, altura de plántula e índice de vigor I. La fecha de siembra del 15 de noviembre fue consistente con los valores más altos en la mayoría de las características registradas; por lo que puede ser considerada como la fecha de siembra más apropiada para producir semilla de calidad para siembra de trigo.

Palabras clave: Triticum aestivum, calidad física, velocidad de emergencia, vigor de plántula.

SUMMARY

Seed quality is considered as a pattern that determines field performance or level of deterioration during storage; quality is used as an indicator of the seed value for specific purposes, including those related to distribution and marketing. The aim of this research was to evaluate the physical quality of the seed and the initial vigor of seedling derived from wheat (*Triticum aestivum* L.) genotypes as influenced by different planting dates. Thirty-six wheat genotypes were established on three planting dates: November 15 and December 15, 2015 and January 15, 2016 at El Bajío Experiment Station of the National Institute of Agricultural, Forest and Livestock Research, located in Celaya, Guanajuato, México. The seeds were subjected to analytical tests for physical quality such as test weight and seed biomass under a completely

randomized experimental design; in addition, a test was carried out in sand beds under nursery conditions to assess the initial seedling vigor through emergence speed and emergence percentage, fresh and dry shoot biomass, seedling height and vigor indices I and II using a randomized complete blocks design. There were statistically significant differences for genotypes and planting dates in the registered characters. The interaction genotypes by planting dates significantly modified the physical characteristics and the seedling vigor expressed through the emergence speed, seedling height and vigor index I. The planting date of November 15 was consistent with the highest values in most of the registered characteristics; therefore, it can be considered as the most appropriate planting date to produce quality seed for wheat planting.

Index words: *Triticum aestivum*, physical quality, emergence speed, seedling vigor.

INTRODUCCIÓN

El trigo (*Triticum aestivum* L.) es el cereal más utilizado en la alimentación humana debido a su alto valor energético y mayor contenido de proteínas en comparación con maíz (Zea mays L.) y arroz (Oryza sativa L.). Este cereal se cosecha prácticamente en todo el mundo, aunque el hemisferio norte presenta condiciones más propicias para su cultivo. La superficie de trigo que se siembra a nivel mundial es la más grande y su comercio es mayor que los demás cultivos agrícolas (FIRA, 2015). En México en 2016 se produjeron cerca de 3.8 millones de toneladas, de las cuales 60 % fue de grano cristalino y 40 % de grano panificable; destacan Sonora, Baja California, Guanajuato y Sinaloa al aportar en conjunto 83 % de la producción nacional (SIAP, 2018). Por otro lado, se establecen alrededor de 17 mil hectáreas para producción de semilla, de las cuales se obtienen alrededor de 85 mil toneladas de categoría certificada que cubre 80 % de la demanda nacional.

La fecha de siembra es una de las decisiones más importantes que el productor de trigo debe tomar en cada inicio del ciclo agrícola, sobre todo cuando se trata

Recibido: 2 de octubre de 2018 **Aceptado:** 8 de julio de 2019

de producción de semilla, por lo que deberá considerar diversos factores que afectan directa e indirectamente el potencial de rendimiento de la variedad que vaya a utilizar. En este sentido, Solís et al. (2004) afirmaron que en las siembras en fechas tempranas (16 de noviembre) el ciclo es más largo porque el cultivo se desarrolla con temperaturas bajas la etapa reproductiva tardía de espiguilla terminal a antesis se alcanzó a los 49 d, en siembra intermedia (15 de diciembre) la duración fue 40 d y de 35 d en la fecha tardía (15 de enero); además, las fechas de siembra tempranas favorecen un incremento del número de tallos, la altura de planta, la longitud de espigas y el peso de mil granos, lo que conduce a un incremento del rendimiento (Baloch et al., 2010).

Existe investigación sobre diferentes tipos de estrés ambiental durante la formación de la semilla y su influencia en su calidad. El estrés hídrico (Dornbos et al., 1995; Ghassemi-Golezani et al., 1997), las deficiencias de minerales y las temperaturas extremas (Franca-Neto et al., 1993; Grass y Burris, 1995) son los más comunes y de mayor efecto en la calidad de la semilla. Las deficiencias hídricas durante el llenado de grano pueden reducir la germinación de la semilla (Heatherly, 1993), causar hasta el 100 % de arrugamiento de la testa de la semilla y disminuir significativamente el peso y vigor (Franca-Neto et al., 1993).

La semilla es de buena calidad cuando presenta pureza varietal y física, alto desempeño fisiológico y libre de patógenos, atributos que determinan la germinación, vigor y longevidad (Bishaw et al., 2007; Courbineau, 2012; García-Rodríguez et al., 2018; Goggi et al., 2008; ISTA, 2015). La calidad fisiológica se refiere a la capacidad para germinar, así como al vigor y algunos aspectos genéticos como la heterosis (Bewley et al., 2006). En este sentido, el vigor es la suma de las propiedades que determinan el nivel de actividad y capacidad de la semilla durante la germinación y emergencia de la plántula, de tal modo que las semillas de buen comportamiento se denominan de alto vigor y las de pobre comportamiento de bajo vigor (ISTA, 2005).

Entre los factores que determinan variaciones en el vigor está la constitución genética, grado de madurez, tamaño y biomasa de la semilla, integridad mecánica, deterioro y envejecimiento, acción de patógenos, medio ambiente y nutrición de la planta madre (Copeland y McDonald, 2001).

Las pruebas de vigor a través de envejecimiento acelerado, conductividad eléctrica y conteo de emergencia de radículas ofrecen información complementaria al ensayo de germinación y ambas permiten estimar el potencial de emergencia en campo bajo condiciones ambientales contrastantes (Costa y de Carvalho, 2006;

Guan et al., 2018; Khan et al., 2010). El uso de semillas con alta calidad favorece una mayor productividad (Munamava et al., 2004), pues el establecimiento deficiente en campo se traduce en un rendimiento bajo en la mayoría de las especies agrícolas (Marcos-Filho, 2005).

Con base en lo anterior, el objetivo de la presente investigación consistió en evaluar la calidad física y determinar el vigor inicial de plántula de la semilla proveniente de genotipos de trigo establecidos en distintas fechas de siembra, bajo la hipótesis de que hay diferencias en la calidad de semilla y pérdida de vigor de plántula en genotipos de trigo como resultado del efecto de retraso en las fechas de siembra.

MATERIALES Y MÉTODOS

Sitio experimental

El estudio se realizó en el Campo Experimental Bajío del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (CEBAJ-INIFAP), en Celaya, Guanajuato, México, localizado a los 20° 34′ N y 100° 49′ O a una elevación de 1765 msnm, en condiciones de campo, laboratorio y vivero. El clima que predomina es semicálido, con una precipitación pluvial media anual de entre 400 y 700 mm. El régimen térmico oscila de 18 a 20 °C. En la clasificación norteamericana, los suelos se consideran vertisol típico (Mora et al., 2001).

Material genético y arreglo experimental

Se utilizaron 36 genotipos de trigo (Cuadro 1), de los cuales ocho variedades fueron testigos (1, 2, 5, 7, 9, 16, 20 y 31) y el resto líneas avanzadas del programa de mejoramiento genético de trigo. Estos materiales fueron establecidos en campo en el CEBAJ en tres fechas de siembra: 15 de noviembre y 15 de diciembre de 2015, y 15 de enero de 2016, bajo un diseño experimental de látice parcialmente balanceado 6 × 6 con tres repeticiones. La unidad experimental estuvo constituida por dos surcos de 3 m de longitud y separados a 75 cm sembrados a doble hilo. La cosecha se realizó el 10, 25 y 30 de mayo de 2016; las muestras de semillas (12 % de humedad) fueron separadas en bolsas de papel y almacenadas en una bodega (22 °C y 55 % HR) hasta enero de 2017, con lo que inició la evaluación de calidad de la semilla en el laboratorio y vivero del Tecnológico Nacional de México-Roque (TecNM-Roque).

Variables registradas

Con una muestra de semillas de cada genotipo se hicieron pruebas analíticas para determinar la calidad

Cuadro 1. Líneas y variedades de trigo utilizadas en la evaluación de campo, laboratorio y vivero en el CEBAJ ciclo OI/2015-16 y en el TecNM-Roque 2017.

No. de genotipo	Genealogía	Tipo de material	Tipo de grano	DMF (días)	AP (cm)
1+	Cortazar S94	Variedad	Harinero	137	90
2 [†]	Urbina S2007	Variedad	Harinero	136	98
3	Ibis//Loth/Gracia	Línea	Harinero	138	97
4	Colibri//Kro	Línea	Harinero	137	95
5 ⁺	Maya S2007	Variedad	Harinero	136	91
6	Colibri/Tragopan	Línea	Harinero	138	96
7 ⁺	Barcenas S2002	Variedad	Harinero	139	93
8	Colibri//Finsi	Línea	Harinero	139	96
9†	Eneida F94	Variedad	Harinero	137	93
10	Diamante/Urbina	Línea	Harinero	132	98
11	Tjb368/Buc//Cupe/3/Ene/Zita	Línea	Harinero	135	99
12	Colibri//Gal	Línea	Harinero	138	96
13	Talco/Turqueza	Línea	Harinero	137	97
14	Diamante/Yeso	Línea	Harinero	142	105
15	Faisan//Loth/Gracia	Línea	Harinero	139	99
16 [†]	Salamanca S75	Variedad	Harinero	137	92
17	Arsenato/Vanadato	Línea	Harinero	131	97
18	Diamante/Aragonita	Línea	Harinero	135	97
19	Plata/Ica30.05//Celestina	Línea	Harinero	135	98
20 [†]	Gema C2004	Variedad	Cristalino	137	94
21	Diamante/Silvinita//Celestina	Línea	Harinero	139	95
22	Hierro/2*Colibri	Línea	Harinero	138	96
23	Hierro/Esfalerita	Línea	Harinero	139	97
24	Condor/Liz	Línea	Harinero	131	84
25	Diamante/Monarca	Línea	Harinero	137	101
26	Tjb368/Buc//Cupe/Wbll1*2/Tukuru	Línea	Harinero	136	101
27	Diamante/Aragonita	Línea	Harinero	136	103
28	Romoga//Buc-S///Blo-S/Psn-S	Línea	Harinero	139	94
29	Colibri/4/Bjy/Coc//Prl/Bow/3/Frtl	Línea	Harinero	138	101
30	Tjb368/Buc///Wbll1*2/Tukuru	Línea	Harinero	137	102
31 [†]	Anatoly C2011	Variedad	Cristalino	138	94
32	Aprot21/Colibri	Línea	Harinero	146	100
33	Plata/Pirolusita	Línea	Harinero	136	99
34	Colibri/Tragopan	Línea	Harinero	139	94
35	Diamante/Aragonita	Línea	Harinero	139	95
36	Colibri/3/Wbll1/Fret2//Pastor	Línea	Harinero	135	100

[†]Variedades testigo, DMF: días a madurez fisiológica, AP. altura de planta.

física (ISTA, 2015) en el Laboratorio de Análisis de Semillas del TecNM-Roque, donde se registró biomasa de semilla (BS) en g en una muestra de 100 semillas y se determinó el peso volumétrico (PV) con un recipiente de 1 L llenado con semilla hasta derramar y rasado en zig-zag para eliminar el excedente, se pesó el contenido en una balanza de peso volumétrico Ohaus (Parsippany, NJ, USA) y se registró la lectura en kg hL-1. Se utilizó un diseño experimental completamente aleatorizado con tres repeticiones.

Se determinó el vigor inicial de plántula en camas de arena bajo condiciones de vivero, durante enero-febrero de 2017 bajo un diseño experimental de bloques completos al azar con tres repeticiones. La unidad experimental fue un grupo de 50 semillas por genotipo, para evaluar velocidad de emergencia (VE), porcentaje de emergencia (PE), peso fresco de vástago (PFV) en g, peso seco de vástago (PSV) en g, altura de plántula (ALP) en cm, índice de vigor I (IV-I) e índice de vigor II (IV-II).

La velocidad de emergencia (VE) se determinó de $VE = \frac{N^o de plántulas normales}{Día del primer conteo} + ... + \frac{N^o de plántulas normales}{Día del conteo final}$ acuerdo con la fórmula de Copeland y McDonald (1995).

Los conteos de emergencia fueron realizados a los 4, 5, 6 y 7 días después de la siembra (dds). El porcentaje de emergencia (PE) se determinó con el número de plántulas emergidas al séptimo día mediante la siguiente fórmula:

PE = (100) x
$$\left(\frac{N^{\circ} \text{ de plántulas emegidas al dia 7 dds}}{N^{\circ} \text{ total de semillas sembradas}}\right)$$

La altura de plántula (ALP) se registró en cm 15 dds en una muestra de 10 individuos con competencia completa, desde el nivel del sustrato hasta el ápice de la hoja superior. Las plántulas se cortaron y pesaron en una balanza analítica para determinar el peso fresco (PFV) en g. Las muestras se introdujeron por 48 h en una estufa calibrada a 60 °C para llevarlas a peso constante y así evaluar el peso seco de vástago (PSV) en g. El índice de vigor I (IV-I) resultó del producto entre el porcentaje de emergencia y la longitud de la plántula y el índice de vigor II (IV-II) fue el producto del porcentaje de emergencia y el peso seco de vástago (Kharb et al., 1994).

Análisis estadístico

Los caracteres evaluados fueron sometidos a un análisis de varianza combinado mediante el procedimiento PROC GLM del paquete estadístico SAS ver. 9.3. La comparación de medias se realizó mediante la prueba de rango múltiple de Tukey ($P \le 0.05$).

RESULTADOS Y DISCUSIÓN

Análisis de varianza

Los resultados del análisis de varianza combinado mostraron diferencias estadísticas altamente significativas (P ≤ 0.01) entre los genotipos de trigo (G), fecha de siembra (FS) y la acción conjunta de estos factores (G × FS) para biomasa (BS) y peso volumétrico (PV) de la semilla (Cuadro 2). El coeficiente de variación (CV) para BS fue de 3.07 % y para PV de 1.33 %, lo cual indica alta confiabilidad del experimento (Gordón-Mendoza y Camargo-Buitargo, 2015).

Por otro lado, al analizar los valores de los cuadrados medios (Cuadro 2) se observa que la fuente de variación de mayor importancia para BS fue el genotipo; es decir, que esta característica estuvo definida principalmente por la constitución genética de las variedades, mientras que la FS tuvo mayor influencia en el PV de todos los materiales.

Factor genotipos

Los genotipos 21, 5, 20, 31 y 25 expresaron la mejor respuesta en biomasa de semilla (BS), cuyo valor fue superior a 5.9 g en 100 semillas, mientras que las líneas de tipo harinero 12, 35, 28, 32 y 4 tuvieron menos de 5.2 g en 100 semillas (Cuadro 3). La comparación de medias de PV en los genotipos presentó una amplitud de 74.1 a 80.5 kg hL-1; así, la línea 25 (harinero) registró el mayor valor y la variedad Urbina S2002 el valor más bajo. Estos valores de peso volumétrico son similares a los encontrados por Castañeda-Saucedo et al. (2009) en trigo bajo diferentes ambientes de producción. Los 36 genotipos evaluados presentaron pesos hectolítricos superiores a 74 kg hL-1, que para la comercialización del grano de trigo establece la Norma Oficial Mexicana NMX-FF-036-1996 (SCFI, 1996).

Fechas de siembra

La segunda fecha de siembra (FS) (15 de diciembre 2015) fue consistente con el mayor valor de BS (5.68 g), seguida por la primera FS (5.62 g) y finalmente, la última FS (15 de enero 2016) tuvo la peor respuesta con sólo 5.54 g en 100 semillas. De acuerdo con Solís et al. (2004), en fechas de siembra tempranas (16 noviembre) se obtiene mayor número de semillas por espiga y por lo tanto mayor rendimiento, aunque los granos son de menor tamaño y peso debido a la competencia entre ellos. También se le puede atribuir a la presencia de un periodo corto de estrés por alta temperatura (29-30 °C) después del periodo de antesis y maduración del cultivo en la primera FS, lo que pudo reducir significativamente el peso de la semilla, como ha sido confirmado en otras investigaciones en

Cuadro 2. Cuadrados medios y significancia estadística del análisis de varianza para calidad física de semilla de 36 genotipos de trigo en 2017.

Fuente de Variación	gl	BS	PV
Genotipos (G)	35	1.02**	21.23**
Fechas de siembra (FS)	2	0.62**	643.37**
G×FS	70	0.16**	4.21**
Error	216	0.02	1.07
Total	323	-	-
CV (%)	-	3.07	1.33

^{**} altamente significativo al 0.01 de probabilidad, gl: grados de libertad, BS: biomasa de semilla, PV: peso volumétrico, CV (%):coeficiente de variación.

Cuadro 3. Comparación de medias de diez genotipos extremos en calidad física de semilla de trigo, determinadas en el laboratorio del TecNM-Roque, en 2017.

Genotipo	BS (g) [†]	Genotipo	$PV (Kg hL^{-1})^{\dagger}$
21(Línea)	6.22 a	25 (línea)	80.56 a
5 (Maya S2007)	6.14 ab	33 (línea)	80.00 ab
20 (Gema C2004)	6.11 ab	19 (línea)	79.67 abc
31 (Anatoly C2011)	5.99 abc	10 (línea)	79.44 abcd
25 (línea)	5.95 abcd	21 (Línea)	79.44 abcd
12 (línea)	5.20 n	32 (Línea)	75.56 klmn
35(línea)	5.19 n	1 (Cortázar F94)	75.33 lmn
28 (línea)	5.18 n	7 (Bárcenas S2002)	75.22 lmn
32 (Línea)	5.13 n	9 (Eneida F94)	74.67 mn
4 (línea)	5.13 n	2 (Urbina F2007)	74.11 n
DSH	0.27		1.90
Fechas de siembra			
15 de noviembre	5.62 b	15 de noviembre	80.14 a
15 de diciembre	5.68 a	15 de diciembre	75.26 c
15 de enero	5.54 c	15 de enero	77.59 b
DSH	0.04		0.33

^{*}Medias con letras iguales en la misma columna, no son estadísticamente diferentes (Tukey, 0.05). DSH: diferencia significativa honesta, BS: biomasa de semilla, PV: peso volumétrico.

trigo (Joshi et al., 2007; Nouri et al., 2011). Por el contrario, Baloch et al. (2010) afirmaron que fechas de siembras tempranas (25 de octubre al 10 noviembre) favorecen el peso de la semilla de trigo; del mismo modo, Fernández et al. (2015) mencionaron que el ambiente de producción tiene efecto en la calidad física de la semilla, ya que ambientes favorables propician mayor peso de la misma.

El PV disminuyó significativamente en los genotipos de trigo conforme se retrasó la fecha de siembra (Cuadro 3). La primera fecha de siembra (15 de noviembre) registró 80.1 kg hL⁻¹, la tercera fecha de siembra (15 de enero) 77.5 kg hL⁻¹ y la segunda (15 de diciembre) 75.2 kg hL⁻¹. En la segunda FS las condiciones agroclimáticas (35 mm de precipitación y 29 °C) permitieron el desarrollo de la roya lineal amarilla en algunos genotipos, lo que propició problemas en el llenado de grano y, como consecuencia, reducción de PV; mientras que en la tercera FS no se presentó incidencia de la enfermedad. En relación con la segunda y tercera FS, los genotipos presentaron menor

densidad de grano, ya sea por una menor acumulación de almidón en el endospermo o de proteína, principalmente en el embrión y la aleurona, o bien a través de altos contenidos de humedad en el endospermo debido probablemente a estrés por alta temperatura como lo señalan Wardlaw y Wrigley (1994).

En este contexto, Fernández et al. (2015) mencionaron que el peso volumétrico es un indicador de la calidad obtenida en campo en relación con el manejo agronómico y las condiciones ambientales que se presentan durante el desarrollo del cultivo y finalmente, son expresadas en la semilla; además, afirmaron que el periodo de llenado de grano es muy sensible a las variaciones de la temperatura del aire.

Desglose de factores de variación

El análisis de varianza para caracteres de vigor inicial de plántula (Cuadro 4) mostró la existencia de efectos estadísticos significativos (P \leq 0.01) entre genotipos (G) y fechas de siembra (FS) para velocidad de emergencia (VE), porcentaje de emergencia (PE), peso fresco de vástago (PFV) y peso seco de vástago (PSV); sin embargo, la interacción G \times FS sólo modificó estadísticamente la VE (P \leq 0.05). El coeficiente de variación (CV) estuvo en un intervalo de 2.9 a 14.2 %, lo que significa que los resultados son confiables y que hubo eficiencia en el manejo del experimento (Palafox-Caballero et al., 2006).

De acuerdo con los valores de los cuadrados medios, se observa que la fuente de variación fechas de siembra (FS) fue la más importante, seguido por los genotipos (G) y finalmente, la interacción G × FS para todos los caracteres registrados.

Al comparar los valores de las medias (Cuadro 5) se aprecia que VE varió de 35.9 a 42.2 plantas emergidas

por día; de este modo, las líneas 29, 30, 25, 33 y 10 fueron consistentes con la mejor respuesta, al promediar la emergencia de 41 plantas por día. Por el contrario, la línea 32 sólo logró emerger 35.9 plantas por día. La velocidad de emergencia (VE), junto con el porcentaje de emergencia (PE), representan atributos de alto valor entre los productores agrícolas, puesto que es el momento en que verifica la existencia de una semilla de calidad sobresaliente (Hampton y TeKrony, 1995). En este contexto, Kirby (1993) señala que una rápida y uniforme emergencia se relaciona con un crecimiento de plántula vigoroso. El porcentaje de emergencia mínimo establecido por el SNICS (2014) es de 90 % para considerar un lote de semillas de trigo de alta calidad fisiológica; en tal sentido, los resultados del ensayo relacionados con PE entre los genotipos de trigo superan este valor (Cuadro 5).

La variedad Maya S2007 presentó el mejor comportamiento en PFV con 2.68 g en 10 plántulas y el genotipo 4 (línea tipo harinero) el valor más bajo (1.8 g). Para PSV sobresalieron los genotipos 35, Maya S2007, 27, 29 y 36 con valores altos y nuevamente el genotipo 4 presentó el menor comportamiento con apenas 0.24 g de PSV en 10 plántulas. Genotipos con alto vigor inicial de plántula repercuten de manera positiva en la biomasa de la plántula, ya que plántulas vigorosas y con alta velocidad de emergencia incrementan el peso seco de vástago. Los resultados de esta investigación coinciden con los reportados por Gharoobi (2011), quien afirmó que la velocidad de emergencia, el porcentaje de germinación, la longitud y peso seco de la plántula generalmente están influenciados por el genotipo.

El ambiente de producción (fecha de siembra) influyó en el vigor inicial de plántula de los materiales evaluados, donde destacó el efecto positivo de la fecha de siembra temprana (15 de noviembre) como ambiente favorable de producción para todos los caracteres registrados,

Cuadro 4. Cuadrados medios del análisis de varianza para caracteres de vigor inicial de plántula en 36 genotipos de trigo, determinadas en vivero en 2017.

Factor de Variación	gl	VE	PE	PFV	PSV
Repeticiones	2	77.86	2.25	0.40	0.014
Genotipos (G)	35	13.91**	16.46**	0.36**	0.005**
Fechas de siembra (FS)	2	13995.18**	178.92**	22.42**	0.177**
G×FS	70	5.03*	10.44	0.12	0.001
Error	140	5.31	8.43	0.10	0.001
Total	323	-	-	-	-
CV (%)		4.68	2.98	14.24	13.32

^{*, **} Significativo al 0.05 y 0.01 de probabilidad, respectivamente. gl: grados de libertad, VE: velocidad de emergencia, PE: porcentaje de emergencia, PFV: peso fresco de vástago, PSV: peso seco de vástago, CV: coeficiente de variación.

Cuadro 5. Comparación de medias de diez genotipos extremos para caracteres de vigor inicial de plántula en trigo.

Genotipos (G)	VE (plantas/d)	G	PE (%)	G	PFV (g)	G	PSV (g)
29 (L)	42.20 a	25 (L)	98.67 a	5 (V)	2.68 a	30 (L)	0.33 a
30 (L)	42.12 a	22 (L)	98.67 a	27 (L)	2.60 ab	5 (V)	0.33 a
25 (L)	41.65 a	31 (V)	98.67 a	29 (L)	2.59 ab	27 (L)	0.33 a
33 (L)	41.38 a	36 (L)	98.44 a	20 (V)	2.54 ab	29 (L)	0.32 ab
10 (L)	41.21 a	29 (L)	98.44 a	24 (L)	2.52 ab	36 (L)	0.32 ab
13 (L)	39.05 abc	20 (V)	96.44 a	23 (L)	2.06 bcd	1 (V)	0.27 abcd
9 (V)	38.99 abc	27 (L)	96.44 a	1 (V)	2.05 bcd	23 (L)	0.25 bcd
15 (L)	38.84 abc	18 (L)	96.22 ab	35 (L)	2.01 bcd	31 (V)	0.25 bcd
1 (V)	37.15 bc	21 (L)	95.78 ab	32 (L)	1.91 cd	32 (L)	0.24 cd
32 (L)	35.90 c	32 (L)	90.89 b	4 (L)	1.81 d	4 (L)	0.24 d
DSH	3.46		5.37		0.60		0.07
Fechas de sien	nbra						
15/11/15	43.17 a		98.72 a		3.73 a		0.33 a
15/12/15	32.62 c		97.46 b		2.32 b		0.28 b
15/01/16	34.41 b		96.15 c		1.82 c		0.25 c
DSH	0.60		0.93		0.10		0.01

Medias con letras iguales en las columnas dentro de cada factor de variación no son estadísticamente diferentes (Tukey, 0.05). G: genotipos, L: línea, V: variedad, VE: velocidad de emergencia, PE: porcentaje de emergencia, PFV: peso fresco de vástago, PSV: peso seco de vástago, DSH: diferencia significativa honesta.

como ha sido confirmado por Copeland and McDonald (2001) y Villaseñor et al. (2012); por el contrario, la fecha de siembra tardía (15 de enero) influyó en la baja calidad al generar plántulas con bajo vigor, no recomendables para la producción de semilla para siembra. Por otro lado, se ha establecido que el periodo de llenado de grano de trigo es muy sensible a las variaciones de la temperatura ambiente (de 10 a 32 °C). Esta etapa puede durar 35 d en un ambiente con estrés por calor durante el ciclo (> 29 °C), falta de agua y normalmente por fechas de siembra tardía y puede prolongarse a 50 d en siembras tempranas y en años fríos (de 10 a 15 °C), sin estrés de agua y nutrición, que son factores conducentes a un ambiente favorable para expresar un potencial máximo de rendimiento (Félix et al., 2009).

En el Cuadro 6 se presentan los cuadrados medios del análisis de varianza para características de vigor inicial de plántula, altura de plántula (APL), índice de vigor I (IV-I) e índice de vigor II (IV-II), donde se aprecian diferencias estadísticas significativas (P \leq 0.01) entre genotipos (G) y fechas de siembra (FS) para los caracteres mencionados. En la interacción G \times FS hubo efecto significativo (P \leq 0.05) sólo en APL e IV-I. Con base en los valores de los cuadrados medios, la FS fue el factor de mayor importancia, seguido por el efecto del genotipo (G) y finalmente la interacción G \times FS para todas las variables registradas.

Los coeficientes de variación fueron desde 6.7 % en ALP hasta 13.7 % en el índice de vigor II, los cuales se consideran aceptables. Estos porcentajes de CV son similares a los reportados por Cervantes-Ortiz et al. (2016) en vigor de plántula en un grupo de líneas de maíz.

En la comparación de medias para ALP, IV-I e IV-II en las variedades y líneas de trigo provenientes de tres fechas de siembra (Cuadro 7) sobresalió la variedad Maya S2007 con las plántulas más altas, al alcanzar 25.3 cm a los 15 dds; mientras que la variedad Anatoly C2011 tuvo el peor comportamiento con 20.0 cm de altura. En el carácter IV-I nuevamente la variedad Maya S2007 expresó la mejor respuesta con el valor más alto; para IV-II lo hicieron la línea 30 y la variedad Maya S2007 al generar el vigor más alto. Por el contrario, la línea 32 fue consistente al presentar bajos valores en estas dos últimas características.

Nuevamente la FS del 15 de noviembre generó el mejor comportamiento de todos los genotipos para todos los caracteres (ALP, IV1 e IV2) y la FS del 15 de enero expresó los valores más bajos. Bishaw et al. (2007) mencionan que las semillas obtenidas de diferentes estaciones de crecimiento o diferentes áreas geográficas a menudo varían en su calidad fisiológica; estas variaciones pueden deberse a las condiciones ambientales prevalecientes durante la formación, desarrollo y maduración de la semilla. En este

Cuadro 6. Cuadrados medios del análisis de varianza para caracteres de vigor inicial de plántula en 36 genotipos de trigo determinados en vivero.

Factor de Variación	gl	APL	V-	IV-II
Repeticiones	2	11.32	133234.82	146.63
Genotipos (G)	35	14.37**	152297.38**	52.09**
Fechas de Siembra (FS)	2	2119.47**	22947819.80**	1992.08**
G×FS	70	3.28*	37697.55*	19.30
Error	140	2.30	26122.31	14.84
Total	323			
CV (%)		6.73	7.34	13.72

^{*, **} Significativo al 0.05 y 0.01 de probabilidad, respectivamente. gl: grados de libertad, CV: coeficiente de variación, APL: altura de plántula, VI-I: índice de vigor I, VI-II: índice de vigor II.

Cuadro 7. Comparación de medias de diez genotipos extremos para caracteres de vigor inicial de plántula en trigo, determinados en vivero.

Genotipos	ALP (cm)	Genotipos	IV-I	Genotipos	IV-II
5 (V)	25.32 a	5 (V)	2474.73 a	30 (L)	32.65 a
29 (L)	24.92 ab	29 (L)	2454.48 ab	5 (V)	32.25 a
18 (L)	24.90 ab	18 (L)	2404.63 abc	27 (L)	31.60 ab
27 (L)	24.42 abc	33 (L)	2362.53 abcd	36 (L)	31.43 ab
33 (L)	23.99 abcd	27 (L)	2360.84 abcd	29 (L)	31.36 ab
32 (L)	20.98 efgh	23 (L)	2051.12 efghi	1 (V)	26.13 abcd
23 (L)	20.86 fgh	4 (L)	2019.96 fghi	23 (L)	24.92 bcd
20 (V)	20.66 gh	20 (V)	1989.93 ghi	31 (V)	24.79 bcd
4 (L)	20.64 gh	31 (V)	1979.12 hi	4 (L)	23.51 cd
31 (V)	20.04 h	32 (L)	1911.50 i	32 (L)	22.31 d
DSH	2.80		298.86		7.12
Fechas de siembra					
15 de noviembre	27.42 a		2707.38 a		32.85 a
15 de diciembre	21.39 b		2085.18 b		26.89 b
15 de enero	18.78 c		1807.15 c		24.52 c
DSH	0.48		52.10		1.24

Medias con letras iguales en las columnas dentro de cada factor de variación no son estadísticamente diferentes (Tukey, 0.05). L: línea, V: variedad, ALP. altura de plántula, IV-I: índice de vigor I, IV-II: índice de vigor II.

sentido, Baloch et al. (2010) afirman que FS tempranas favorecen la calidad física de la semilla, características de la planta, rendimiento y componentes debido principalmente a la mayor acumulación de horas frío y el alargamiento del ciclo biológico de la planta. Por su parte, Fernández et al. (2015) concluyeron que las variedades de trigo responden diferencialmente a los ambientes de producción y al manejo agronómico; de tal modo que, ambientes de producción favorables presentan valores altos en parámetros de calidad como peso volumétrico, peso de mil semillas, porcentaje de germinación, velocidad

de emergencia, longitud de plúmula y peso seco; lo que permite ubicar ambientes en los que las variedades logran una expresión óptima de calidad en la semilla.

CONCLUSIONES

En todos los caracteres registrados, el factor fechas de siembra fue el más importante, con excepción de la biomasa de semilla, donde el efecto de los genotipos fue el de mayor relevancia. La fecha de siembra del 15 de noviembre influyó de manera positiva en la calidad física

y vigor inicial de plántula, por lo que esta fecha de siembra se considera favorable para la producción de semilla de calidad para el cultivo de trigo. Se presentó variación entre los genotipos en la mayoría de las características de vigor de plántula; además, es importante considerar combinaciones específicas de genotipo y fecha de siembra para la producción de semilla de trigo, pues la interacción tiene un efecto significativo sobre el vigor de la semilla.

BIBLIOGRAFÍA

- Baloch M. S., I. T. H. Shah, M. A. Nadim, M. I. Khan and A. A. Khakwani (2010) Effect of seeding density and planting time on growth and yield attributes of wheat. *The Journal of Animal and Plant Sciences* 20:239-242.
- Bewley J. D., M. Black and P. Halmer (2006) The Encyclopedia of Seeds: Science, Technology and Uses. CABI International Publishing. Wallingford, U. K. 828 p.
- Bishaw Z., A. A. Niane and Y. Gan (2007) Quality seed production. In: Lentil. An Anciet Crop for Modern Times. S. S. Yadav, D. McNeil and P. C. Stevenson (eds.). Springer. Dordrecht, The Netherlands. pp:349-383.
- Castañeda-Saucedo M. C., C. López-Castañeda, M. T. B. Colinas-De León, J. C. Molina-Moreno y A. Hernández-Livera (2009) Rendimiento y calidad de la semilla de cebada y trigo en campo e invernadero. *Interciencia* 34:286-292.
- Cervantes-Ortiz F., J. Hernández-Esparza, J. A. Rangel-Lucio, E. Andrio-Enríquez, M. Mendoza-Elos, G. Rodríguez-Pérez y L. P. Guevara-Acevedo (2016) Aptitud combinatoria general y específica en la calidad de semilla de líneas $S_{\rm g}$ de maíz. Revista Fitotecnia Mexicana 39:259-268.
- Copeland L. O. and M. B. McDonald (1995) Principles of Seed Science and Technology. Third edition. Chapman and Hall. New York, USA. 409 p.
- Copeland L. O. and M. B. McDonald (2001) Principles of Seed Science Technology. Fourth edition. Burguess Publishing Company. Minneapolis, Minnesota, USA. 468 p.
- Costa P. S. C. e M. L. M. de Carvalho (2006) Teste de conductividade elétrica individual na avaliação da qualidade fisiológica de sementes de café (*Coffea arabica* L.). *Ciência e Agrotecnologia* 30:92-96, https://doi.org/10.1590/S1413-70542006000100013
- Courbineau F. (2012) Markers of seed quality: from present to future. Seed Science Research 22:S61-S68, https://doi.org/10.1017/S0960258511000419
- Dornbos D. L. Jr. (1995) Seed vigor. *In*: Seed Quality: Basic Mechanisms and Agricultural Implications. A. S. Basra and R. E. Gough (eds.). Food Products Press. New York, USA. pp:45-80.
- Félix V. P., J. E. Ortiz E., G. Fuentes D., J. G. Quintana Q. y J. Grajeda G. (2009) Horas frío en relación al rendimiento de trigo. Áreas de roducción del estado de Sonora. Folleto Técnico No. 63. INIFAP, Campo Experimental Valle del Yaqui. Ciudad Obregón, Sonora, México. 44 p.
- Fernández S. R., A. Carballo C., H. E. Villaseñor M. y A. Hernández L. (2015) Calidad de semilla de trigo de temporal en función del ambiente de producción. *Revista Mexicana de Ciencias Agrícolas* 6:1239-1251, https://doi.org/10.29312/remexca.v6i6.573
- FIRA, Fideicomisos Instituidos en Relación con la Agricultura (2015)
 Panorama Agroalimentario. Trigo 2015. Dirección de
 Investigación y Evaluación Económica y Sectorial, FIRA Banco
 de México. México, D.F. 41 p.
- de México. México, D.F. 41 p.
 Franca-Neto J. B., F. C. Krzyanowski, A. A. Henning, S. H. West and L. C. Miranda (1993) Soybean seed quality as affected by shriveling due to heat and drought stresses during filling. Seed Science and Technology 21:107-116.
- García-Rodríguez J. J., M. A. Ávila-Perches, F. P. Gámez-Vázquez, M. de la 0-Olán y A. J. Gámez-Vázquez (2018) Calidad física y fisiológica de semilla de maíz influenciada por el patrón de siembra de progenitores. Revista Fitotecnia Mexicana 41:31-37.
- Gharoobi B. (2011) Effects of seed size on seeding characteristics of five barley cultivars. Iranian Journal of Plant Physiology 1:265-

270

- Ghassemi-Golezani K., A. Soltani and A. Atashi (1997) Effect of water limitation in the field on seed quality of maize and sorghum. Seed Science and Technology 25:321-323.
- Goggi A. S., P. Caragea, L. Pollak, G. McAndrews, M. DeVries and K. Montgomery (2008) Seed quality assurance in maize breeding programs: tests to explain variations in maize inbreeds and populations. *Agronomy Journal* 100:337-343, https://doi.org/10.2134/agronj2007.0151
- Gordón-Mendoza R. e I. Camargo-Buitargo (2015) Selección de estadísticos para la estimación de la precisión experimental en ensayos de maíz. *Agronomía Mesoamericana* 26:55-63, https://doi.org/10.15517/am.v26i1.16920
- Grass L. and J. S. Burris (1995) Effect of heat stress during seed development and maturation on wheat (*Triticum durum*) seed quality. Seed germination and seedling vigor. *Canadian Journal* of *Plant Science* 75:821-829, https://doi.org/10.4141/cjps95-138
- Guan Y. J., M. Q. Yin, X. W. Jia, J. Y. An, C. Wang, R. H. Pan, W. J. Song and J. Hu (2018) Single counts of radicle emergence can be used as a vigour test predict seedling emergence potential of wheat. Seeds Science and Tecnology 46:349-357, https://doi. org/10.15258/sst.2018.46.2.15
- Hampton J. G. and D. M. TeKrony (1995) Handbook of Vigour Test Methods. Third edition. International Seed Testing Association. Bassersdof, Switzerland. 117 p.
- Heatherly L. G. (1993) Drought stress and irrigation effects on germination of harvested soybean seed. *Crop Science* 33:777-781, https://doi.org/10.2135/cropsci1993.0011183X003300040029x
- ISTA, International Seeds Testing Association (2005) International Rules for Seed Testing. International Seeds Testing Association. Zurich, Switzerland. 126 p.
- ISTA, International Seeds Testing Association (2015) International Rules for Seed Testing. Introduction to the ISTA rules. International Seeds Testing Association. Zurich, Switzerland. pp: i-l-6, https://doi.org/10.15258/istarules.2015.i
- Joshi A. K., B. Mishra., R. Chatrath, G. Ortiz F. and R. P. Singh (2007) Wheat improvement in India: present status, emerging challenges and future prospects. *Euphytica* 157:431-446, https://doi.org/10.1007/s10681-007-9385-7
- Khan A. Z., P. Shah, F. Mohd, H. Khan, Amanullah, S. Perveen, S. Nigar, S. K. Khalil and M. Zubair (2010) Vigor test used to rank seed lot quality and predict field emergence in wheat. *Pakistan Journal of Botany* 42:3147-3155.
- Kharb R. P. S., B. P. S. Lather and D. P. Deswal (1994) Prediction of field emergence through heritability and genetic advance of vigour parameters. Seed Science and Technology 22:461-466.
- Kirby E. J. M. (1993) Effect of sowing depth on seedling emergence, growth and development in barley and wheat. Field Crops Research 35:101-111, https://doi.org/10.1016/0378-4290(93)90143-B
- Marcos-Filho J. M. (2005) Fisiologia de Sementes de Plantas Cultivadas. Fundação de Estudos Agrários "Luiz de Queiroz". Piracicaba, Brasil. 495 p.
- Mora G. M., V. Ordaz C., J. Z. Castellanos, A. Aguilar S., F. Gavi y V. Volke H. (2001) Sistemas de labranza y sus efectos en algunas propiedades físicas en un vertisol, después de cuatro años de manejo. Terra Latinoamericana 19:67-74.
- Munamava M. R., A. S. Goggi and L. Pollak (2004) Seed quality of maize inbred lines with different composition and genetic backgrounds. *Crop Science* 44:542-548, https://doi.org/10.2135/cropsci2004.5420
- Nouri A., Á. Etminan, J. A. T. da Silva and R. Mohammadi (2011) Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (*Triticum turjidum* var. durum Desf.). Australian Journal of Crop Science 5:8-16.

 Palafox-Caballero A., O. H. Tosquy-Valle, M. Sierra-Macías, A.
- Palafox-Caballero A., O. H. Tosquy-Valle, M. Sierra-Macías, A. Zambada-Martínez y H. Córdova-Orellana (2006) Híbridos trilineales de maíz comunes y de alta calidad de proteína para Veracruz, México. Agronomía Mesoamericana 17:201-206, https://doi.org/10.15517/am.v17i2.5160
- SCFI, Secretaría de Comercio y Fomento Industrial (1996) Productos alimenticios no procesados-Cereales-Trigo (*Triticum aestivum* L y *Triticum durum* Desf.) Especificaciones y métodos de prueba. Diario Oficial de la Federación. México, D.F. 26 de

- febrero de 1996. p:4.
- SIAP, Servicio de Información Agroalimentaria y Pesquera (2018) Anuario estadístico de la producción agrícola. Servicio de Información Agroalimentaria y Pesquera, SAGARPA. México, D. F. https:// nube.siap.gob.mx/cierreagricola/ (Marzo 2018).
 SNICS, Servicio Nacional de Inspección y Certificación de Semillas (2014)
- Regla para la calificación de semilla de avena, cebada, centeno, trigo y triticale. SAGARPA- SNICS. México, D.F. 18 p.
 Solís M. E., M. Hernández M., A. Borodanenko, J. L. Aguilar A. y O. A. Grajeda
- C. (2004) Duración de la etapa reproductiva y el rendimiento de

- trigo. *Revista Fitotecnia Mexicana* 27:323-332.

 Villaseñor M. H. E., R. Hortelano S. R., M. F. Rodríguez G., E. Martínez C. y
 R. Fernández S. (2012) Variedades de trigo recomendadas para siembras de temporal en el estado de Tlaxcala. Folleto Técnico 50. INIFAP, CIRCE. Sitio Experimental Tlaxcala. Chiautempan, Tlaxcala. 36 p.
- Wardlaw I. F. and C. W. Wrigley (1994) Heat tolerance in temperate cereals: an overview. Australian Journal of Plant Physiology 21:695-703, https://doi.org/10.1071/PP9940695