RENDIMIENTO Y CARACTERÍSTICAS MORFOLÓGICAS RELACIONADAS CON TIPO DE PLANTA ERECTA EN FRIJOL PARA RIEGO

SEED YIELD AND MORPHOLOGICAL TRAITS RELATED TO ERECT PLANT TYPE IN **IRRIGATED COMMON BEAN**

Rafael A. Salinas Pérez¹, Jorge A. Acosta Gallegos^{1*}, Ernesto López Salinas¹, Ciria A. Torres Estrada¹, Francisco J. Ibarra Pérez¹ y Rubén Félix Gastelum²

¹ Programa de Frijol, Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Apdo. Postal 112. 34000, Celaya, Gto, Tel 01 (461) 6115323 Ext. 200, Fax 01 (461) 6115431. Departamento de Ciencias Biológicas, Universidad de Occidente. Carretera Internacional y Boulevard Macario Gaxiola s/n. 81223, Los Mochis, Sinaloa.

*Autor para correspondencia (jamk@prodigy.net.mx)

RESUMEN

Para realizar la cosecha directa de frijol (Phaseolus vulgaris L.) se requieren plantas con crecimiento erecto. Durante el otoñoinvierno 2004 - 2005 se evaluaron 64 genotipos de cinco tipos de frijol: 'Azufrado', 'Pinto', 'Flor de Mayo', 'Flor de Junio' y 'Negro'. Los genotipos fueron de hábito determinado (tipo I) e indeterminado (tipos II y III) y se establecieron bajo riego en tres localidades: Los Mochis, Sinaloa; Celaya, Guanajuato y Cotaxtla, Veracruz, México. Se utilizó un diseño látice triple 8 x 8; la parcela fue un surco de 0.8 m de ancho y 6.0 m de longitud. Se determinaron siete características, dos relacionadas con la fenología, cuatro con la estructura de planta, y rendimiento. Para rendimiento hubo diferencias significativas ($P \le 0.05$) entre sitios, genotipos e interacción. En Los Mochis el rendimiento varió de 1076 a 2534 kg ha-1, en Cotaxtla de 700 a 2276 kg ha-1 y en Celaya de 800 a 4610 kg ha⁻¹. Esa variación fue consecuencia de la amplia diversidad en el origen y hábito de crecimiento de los genotipos, los que difirieron en grado de adaptación. En las tres localidades el rendimiento de los genotipos de hábito indeterminado tipos II y III superó al de las variedades determinadas tipo I. Las características altura de la primera vaina, madurez, acame de planta y grosor del hipocótilo se relacionaron entre sí: a mayor altura de la primera vaina, mayor grosor del hipocótilo y más días a madurez; mientras que a menor altura hubo, mayor porcentaje de acame. Un mayor acame se relacionó con menor grosor del hipocótilo. Ninguna de esas características mostró relación con el rendimiento. Bajo el sistema de siembra utilizado, los genotipos de planta erecta mostraron bajo rendimiento; entre éstos los sobresalientes fueron: A 525, 'Negro Nayarit', 'Negro Tacaná' y 'Negro Citlali', de hábito indeterminado Tipo II.

Palabras clave: Phaseolus vulgaris, altura de planta, grosor del hipocótilo, rendimiento.

SUMMARY

Direct harvest of common bean (Phaseolus vulgaris L.) is feasible, for that plants of erect growth habit are needed. A trial with 64 commercial bean genotypes was conducted during the Fall-Winter season 2004 - 2005. Tested genotypes including five

commercial classes: 'Yellow', 'Pinto', 'Flor de Mayo', 'Flor de Junio' and 'Black', and three growth habits: determinate (type I) and indeterminate (types II and III). The trials were established under irrigated conditions at Los Mochis, in Sinaloa, Celaya, in Guanajuato and Cotaxtla, in Veracruz, México. A triple lattice design 8 x 8 was utilized and the experimental plot was a single 6-m row, with rows separated at 0.8 m. During the growth cycle seven characteristics were recorded: two related to plant phenology, four to plant height structure, plus seed yield. For seed yield there were significant differences (P > 0.05) among sites and genotypes and for the genotype by site interaction. In Los Mochis seed yield varied from 1076 to 2534 kg ha⁻¹, in Cotaxtla from 700 to 2276 kg ha⁻¹ and in Celaya from 800 to 4610 kg ha-1. This large variation observed in yield was the result of the wide diversity among genotypes regarding their origin and growth habit, which resulted in differences in adaptation. On all sites indeterminate genotypes of growth habit types II and III gave higher yields than determinate genotypes type I. The studied morphological traits resulted interrelated among themselves, height to the first pod, plant lodging, physiological maturity and hypocotyl thickness; the higher the first pod, the later to mature and thicker hypocotyls, whereas the lower the first pod, the higher plant lodging. None of these traits was related to seed yield. Under the utilized production system the genotypes of erect plant type displayed low yield; among them, those with high yield were: A 525, 'Negro Nayarit', 'Negro Tacaná' and 'Negro Citlali', all of indeterminate growth habit type II.

Index words: Phaseolus vulgaris, plant height, hypocotyl thickness, seed yield.

INTRODUCCIÓN

El cultivo del frijol (*Phaseolus vulgaris* L.) en el sistema de riego en México, es una excelente alternativa de producción; sin embargo, la escasez de la mano de obra para la cosecha y la necesidad de una pronta recolección son los principales problemas para de los productores. Una alternativa viable para solucionar esta problemática, es la generación de cultivares mejorados de planta erecta, que

Recibido: 11 de Enero del 2007. Aceptado: 25 de Marzo del 2008. faciliten la cosecha mecánica directa, principalmente de las clases comerciales de alta demanda como: 'Peruano', 'Flor de Mayo', 'Flor de Junio', 'Pinto' y 'Negro' (Castellanos *et al.*, 1997).

Algunas características de la planta de frijol se consideran componentes importantes en el desarrollo de cultivares con plantas erectas, como: grosor y altura del hipocótilo (Acquaah *et al.*, 1991), ángulo de inserción de las ramas y número reducido de ramas por planta (Adams, 1982), altura de inserción de la primera vaina y longitud de entrenudos (Teixeira *et al.*, 1999). Tales características se asocian principalmente con variedades de hábito indeterminado tipo II, de grano pequeño (Kelly y Adams, 1987; Brothers y Kelly, 1993).

Los caracteres morfológicos relacionados con arquitectura de planta erecta deben ser identificados en cada variedad porque son de herencia compleja, o bien que están ligados con un color o tamaño de grano determinado (Kelly y Adams, 1987; Acquaah et al., 1991). Por ello, la identificación de materiales sobresalientes en los tipos de frijol importantes en México facilitará el desarrollo de cultivares de arquitectura erecta. Los caracteres relacionados con planta erecta, podrían emplearse como criterios de selección en los programas de mejoramiento genético. La transferencia de la arquitectura erecta de materiales tropicales de hábito II y semilla pequeña a materiales de grano pinto con hábito indeterminado postrado tipo III, de semilla mediana, tomó tres ciclos de selección recurrente (Kelly y Adams, 1987), lo que sugiere asociaciones negativas entre las características de planta erecta y el tamaño de la semilla (Sexton et al., 1994). La evaluación de plantas individuales por arquitectura erecta no fue eficiente, y de entre los caracteres morfológicos estudiados, la longitud de los entrenudos mostró la mayor variación y predominancia de efectos aditivos (Teixeira et al., 1999).

Los objetivos de este estudio fueron: a) cuantificar el rendimiento de 64 genotipos de frijol de diferente hábito de crecimiento y origen en tres localidades, b) evaluar la relación de cinco características morfológicas con el tipo de planta erecta y, c) determinar la relación de esas características morfológicas con el rendimiento.

MATERIALES Y MÉTODOS

Localidades de prueba

Las evaluaciones experimentales se hicieron durante el ciclo de otoño-invierno 2004 - 2005 en condiciones de riego, en tres localidades: Los Mochis, Sinaloa en el trópico seco; Celaya, Guanajuato, en la región de El

Bajío; y en Cotaxtla, Veracruz, en el trópico húmedo. La siembra en Los Mochis fue el 25 de octubre de 2004, en Cotaxtla el 18 de octubre de 2004 y el 17 de marzo del 2005 en Celaya. Las características de las localidades de prueba se muestran en el Cuadro 1. Por lo general el clima de estas localidades en la estación de crecimiento es seco y libre de heladas, aunque con cierto riesgo de ocurrencia en Los Mochis por su localización al norte del país.

Germoplasma utilizado

Se estudiaron 64 genotipos de cinco tipos de frijol: 'Azufrado', 'Pinto', 'Flor de Mayo', 'Flor de Junio' y 'Negro' (Cuadro 2). Para cada clase y tipo de hábito de crecimiento se incluyó al menos una variedad testigo: 'Azufrado Higuera' (tipo I), 'Negro INIFAP' (tipo II), 'Flor de Mayo Anita' (tipo III) y 'Flor de Junio Silvia' (tipo III), respectivamente; así como dos líneas con arquitectura erecta generadas en el Programa de Frijol del Centro Internacional de Agricultura Tropical: A 55 (Singh et al., 2003) y A 525 (CIAT, 1995). La mayoría de los materiales evaluados provienen del proyecto de mejoramiento del Campo Experimental Valle del Fuerte, y algunos de otras sedes de mejoramiento genético del frijol del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) en México y presentan hábito de crecimiento determinado (tipo I) o indeterminado (tipos II y III) (Cuadro 2).

Diseño experimental y conducción del ensayo

Se utilizó un diseño experimental látice triple 8 x 8, con tres repeticiones, con parcela experimental de un surco de 0.8 m de ancho y 6.0 m de longitud; la parcela útil constó de 5 m centrales del surco (4.0 m²). Se fertilizó al momento de la siembra con la dosis 50N-50P-00K de N₂-P₂O₅-K₂O₅. En cada localidad se aplicaron los riegos necesarios y se dieron las labores agronómicas, de acuerdo con las recomendaciones para el cultivo de frijol de riego en la región (López *et al.*, 2001; CEVAF, 2003).

Características determinadas evaluadas

Se consideraron seis características: dos relacionadas con la fenología de la planta, cuatro con la arquitectura de planta erecta, y rendimiento de grano. Las características fenológicas que se determinaron a partir de la siembra fueron: días a inicio floración y a madurez fisiológica. Las características morfológicas incluyeron: grosor del hipocótilo, acame de planta, hábito de crecimiento y altura de la primera vaina. La primera se midió con un vernier; la segunda en forma visual con una escala de 1 a 4, donde 1 fue sin acame y 4 todas las plantas del surco

acamadas; la tercera en forma visual conforme a la descripción de Singh (1982); y la altura de la primera vaina con una regla a partir de la superficie del suelo. El

rendimiento de grano se determinó en un surco de 5 m de longitud, previa eliminación de 0.5 m de cabecera en cada parcela.

Cuadro 1. Características geográficas y climáticas de las localidades de prueba incluidas en el presente estudio.

Localidad	Temperatura	Altitud	Precipitación	Latitud	Longitud	Tipo de suelo	Región climática
	media (°C) †	(m)	anual (mm)	Norte	Oeste		
Los Mochis,	18.0	15	352	25°05'	108°38'	Vertisol	Trópico seco
Sinaloa							
Celaya, Guanajuato	20.6	1765	600	20°34'	100°50'	Vertisol	Templado subhúmedo
Cotaxtla, Veracruz	28.0	70	1400	18°50'	96°10'	Franco arenoso	Trópico húmedo

[†] Temperatura media durante el ciclo del cultivo.

Cuadro 2. Tipo de grano y hábito de crecimiento de los 64 genotipos de frijol aquí estudiados.

Genotipo	${ m Tipo}^{\dagger}$	Hábito††	Genotipo	Tipo	Hábito
A 55	N	II	AP78/Mo-91-92-2029-4-M-M-M-3M	A	I
'Negro Sahuatoba'	N	III	AR87//(Azpa5/(II5FRM4-MMM//(G22242/XAN143)	Α	I
'Negro Altiplano'	N	III	AN/Mo-91-92-2029-2-2-2M	Α	I
'Negro INIFAP' (T)	N	II	AP78/AP87/CCTM 19350-9-1-M-2M	A	III
'Negro Cotaxtla-91'	N	II	AZPA 5/Montcalm	Α	I
'Negro Medellín'	N	II	Mo-94-95-1740-9-CM-1-1-1M	Α	III
'Jamapa Plus'	N	III	AP78/Mo-91-92-2029-20M	A	III
'Negro Nayarit'	N	II	AZPA5/Can-100-6-1-2-2M2	A	I
'Negro Tacaná'	N	II	Azufrado Higuera (T)	A	I
A 525	C	II	Azufrado Regional 87	A	I
AP78/Mo-91-92-2029-9M	Α	III	Azufrado Peruano 87	A	I
AP78/Mo-91-92-2029-9M	Α	II	AZPA 31	A	II
II5FRM-4-M-M-M/AA33	Α	III	PVA721/G13094DR17675-5M	C.	III
AP78/Mo-91-92-2029-19M	Α	I	PVA721/G13094DR17675-6M	C	III
Mo-82-83-4044/ZAA 78-2-2	Α	III	G18258/WAF-9 CCTM-14814-M-1M	C	I
C72/(C72/AM33/C72)	Α	I	AR87/CL-20-2-CM-M	C	III
AZPA 231	Α	I	AFR-88/WAF-9 CCTM14820-M-1-CM	C	III
AZPA 230	Α	I	PVA-721/G13094DR17675-5M	C	II
AZPA 242	A	I	(Mo-95-96-3413/AAM33)-6-1-1	Α	II
AZPA 213	Α	I	PIMPA-11	P	III
AZPA 288	A	I	Pinto Bayacora	P	III
AZPA 260	Α	II	97-RS-101	P	II
AZPA 278	Α	II	97-RS-110	P	II
AZPA 280	Α	II	PR 96003-22	P	III
AZPA 292	Α	II	Flor de Mayo P-17	FM	II
Az.Pim78/Mo-91-92-1585	Α	II	Flor de Mayo P-2	FM	II
Az.Reg87/1963 (95-96)	A	III	Flor de Junio Silvia (T)	FJ	III
Az.Reg87/VA566 (95-96)	A	I	Flor de Mayo P-1	FM	II
AP78/45DRM-4M-3M	A	III	Flor de Mayo Anita (T)	FM	III
AP78/C72-36M	A	III	Rayado Rojo	C	I
PP80/CL-3M	A	III	DON 38	P	III
Comp-Mo-1/Mo-91-92-2029	Α	III	'Negro Citlali'	N	II

[†] Tipo de grano: A = Azufrado, N = Negro, C = Color claro P = Pinto, FM = Flor de Mayo, FJ = Flor de Junio; †† Hábito de crecimiento: I = Determinado, II= Indeterminado semi-guía, y III= Indeterminado guía postrado; T = variedad testigo.

Análisis estadísticos

Las variables fueron sometidas a análisis de varianza por localidad y combinado a través de localidades, de correlación simple, y a la prueba de comparación de medias, con la prueba de Tukey ($P \le 0.05$). Para los análisis se utilizó un programa estadístico para microcomputadoras MSTAT-C versión 2.1 (Freed *et al.*, 1991). Para la discusión, los genotipos fueron agrupados por hábito de crecimiento.

RESULTADOS Y DISCUSIÓN

Rendimiento y adaptación

En el rendimiento hubo diferencias significativas ($P \le$ 0.05) entre localidades, genotipos e interacción genotipo por localidad (datos no mostrados). Los rendimientos en Celaya superaron a los de Los Mochis y de Cotaxtla (Cuadro 3). A pesar de que el ensayo se condujo en las tres localidades de prueba bajo las mismas condiciones de manejo, en riego y fertilización, la significancia de la interacción genotipo por ambiente confirma que diferentes genotipos son adecuados para cada localidad, como ocurre con las variedades comerciales que se recomiendan y explotan en cada región (Rosales et al., 2004). Por lo anterior, los mejores genotipos en cada localidad fueron diferentes. Sabaghnia et al. (2006) han señalado en otras leguminosas de grano, las dificultades inherentes en la selección por efecto de la interacción genotipo por ambiente.

En general, los genotipos de hábito de crecimiento indeterminado (tipos II y III) resultaron superiores a los de hábito determinado (tipo I) en las tres localidades, diferencia que fue acentuada en Celaya (Cuadro 3). El menor potencial de rendimiento de los genotipos de hábito determinado, entre otros factores, se debe a su precocidad (Cuadro 4) y a la relación negativa entre tamaño de la semilla y potencial de rendimiento (Park, 1993; Sexton et al., 1994). En Los Mochis el rendimiento promedio por hábito de crecimiento resultó relativamente similar, lo que en parte explica la preferencia por variedades de hábito determinado tipo I en esa región, ya que plantas de este tipo facilitan las labores mecanizadas y el riego. Por otra parte, en la región tropical húmeda, como en Cotaxtla, se prefieren las variedades de hábito tipo II porque son de porte erecto en comparación con los de tipo III, por que en estas últimas pueden ocurrir pérdidas considerables por manchado y pudrición del grano al estar las vainas en contacto con el suelo. En Cotaxtla el rendimiento de los tipos II y III resultó fue similar (Cuadro 3). En Celaya, la principal variedad en condiciones de riego es 'Flor de Junio Marcela', de hábito indeterminado tipo III; en esta localidad, además de las variedades de tipo III, las de tipo II mostraron excelente adaptación y rendimiento.

En Los Mochis los genotipos de mayor rendimiento PVA721/G13094-DR17675-5-M, Mo82-83-4044/ZAA-78-2-2, FMP 17, 'Flor de Mayo Anita', 97-RS-110 y 97-RS-101 con rendimientos de 2 534, 2 429, 2 325, 2 325, 2 257 y 2 187 kg ha⁻¹, respectivamente. Los dos primeros fueron desarrollados por el programa local y los cuatro restantes provienen del programa de Celaya y de ellos sólo el primero es de hábito tipo I y el resto es de tipo III (Cuadros 4, 5 y 6). En Cotaxtla los genotipos sobresalientes fueron: 'Negro Nayarit', DON 38. AP78/45DRM-4-M-M-M-3M, AP78/Mo-91-92-2029, 'Negro Cotaxtla 91' y 'Negro Citlali', con rendimientos de 2 301, 2 276, 2 184, 2 142, 2 085 y 2 048 kg ha⁻¹, respectivamente. Tres son de hábito indeterminado tipo II y dos de tipo III (Cuadros 5 y 6). De todos ellos, sólo 'Negro Cotaxtla' fue desarrollado en el programa local, tres son del programa de Los Mochis y dos del de Celaya. En Celaya los genotipos con mayor rendimiento fueron: Mo-82-83-4044/ZAA78-2-2, 97-RS-101, 'Negro Citlali', AP78/45DRM-4-M-M-M-3M y ANxMo91-92-2029-2-2-2M; de éstos, dos son del programa local y tres del de Los Mochis; tres son de hábito indeterminado tipo III y dos de tipo II (Cuadros 5 y 6).

Los resultados anteriores indican que el intercambio de germoplasma entre programas de mejoramiento ubicados en diferentes regiones del país, es una posibilidad viable para ampliar la base genética de cada uno de ellos (Singh, 2001) y para la obtención de nuevas variedades por el método de introducción (Fehr, 1987); esto último en caso de que el material introducido cumpla con las características agronómicas relacionadas con la adaptación a la región y con las demandadas de los consumidores. En Celaya, con excepción de AZPA 230 (tipo I), los genotipos superiores sobresalientes fueron de hábito indeterminado (tipo II o III), lo que coincide con lo descrito por diversos investigadores (White et al., 1992; Park, 1993), referente a que el mayor potencial de rendimiento está asociado con el hábito de crecimiento indeterminado y en forma negativa con el tamaño de la semilla (White y Gonzalez, 1990). Así, el rendimiento promedio de las variedades correspondientes a los tipos II y III fue superior a las de tipo I, en las tres localidades de prueba (Cuadro 3).

Las líneas con tipo de planta erecta introducidas del CIAT, (A 55 y A 525) estuvieron entre las de mayor altura de planta y menor peso de 100 semillas, y su nivel de rendimiento fue intermedio; A 525 superó en rendimiento a A 55. Las variedades 'Negro Nayarit', 'Negro Tacaná' y 'Negro Citlali' de planta erecta tipo II

estuvieron entre los genotipos de mayor rendimiento en las tres localidades de prueba, cuyo grano es de valor comercial. Todos los genotipos erectos son de semilla pequeña y negra, excepto A 525 que es de semilla de color claro; lo anterior significa que en México ya existen genotipos de planta erecta, pero sólo para el tipo comercial de grano negro, pequeño y opaco, como las variedades 'Negro Nayarit', 'Negro Tacaná' y 'Negro Citlali'.

El rendimiento varió de 1076 a 2534 kg ha⁻¹ en Los Mochis, de 700 a 2301 en Cotlaxtla, mientras que en Celaya osciló de 750 a 4550 kg ha⁻¹ (Cuadros 4, 5 y 6).

Estas amplias variaciones en rendimiento son congruentes con la amplia diversidad de genotipos incluidos en este estudio en cuanto a origen, hábito de crecimiento, ciclo de cultivo y resistencia a enfermedades, por lo cual difieren en su grado de adaptación a cada localidad especifica. La adaptación en parte fue conferida por el ciclo biológico y el nivel de resistencia a las enfermedades en cada localidad de prueba, sobre todo a las enfermedades que causan las pudriciones de raíz (*Fusarium* spp. y *Rhizoctonia solani*) y a tizón común (*Xanthomonas campestris* pv *phaseoli*), patógenos que estuvieron presentes en las tres localidades.

Cuadro 3. Rendimiento promedio y rango de rendimiento de 64 genotipos de frijol agrupados por hábito de crecimiento producidos en condiciones de riego en tres localidades.

Localidad	Rango	Rendimiento	Hábito de crecimiento						
		promedio (kg ha ⁻¹)	Tipo I (16) ††	Tipo II (24)	Tipo III (24)				
Los Mochis	1076 - 2534	1742 b [†]	1666	1809	1726				
Celaya	750 - 4610	2678 a	1997	2951	2942				
Cotaxtla	599 - 2301	1331 b	1187	1467	1480				
Promedio		1917	1563 B	1999 A	2106 A				

[†] Medias con la misma letra dentro de columnas (minúsculas) o hileras (mayúsculas) son estadísticamente iguales (Tukey, 0.05)

Cuadro 4. Características agronómicas de 16 genotipos de frijol de hábito determinado (tipo I) establecidos en tres localidades en condiciones de riego.

]	Días a flo	r [†]		Días a madurez [†]			Rendimiento (kg ha ⁻¹)		
Genotipo	Mo ^{††}	Ce	Co	Mo	Ce	Co	Мо	Ce	Co	
AZPA 231	54	52	38	118	103	64	1492	3175	1364	
AZPA 230	54	46	37	120	98	73	1250	3950	599	
AZPA 242	54	45	36	120	100	78	1389	1125	1244	
AZPA-213	53	46	36	117	100	75	1389	2050	1759	
AR87/VA566 (95-96)	54	44	36	125	100	72	1215	1250	730	
AZPA5/Montcalm	54	52	41	130	103	77	2013	2675	832	
AZPA5/C100-6-1-2-2-M2	54	46	35	118	100	79	1770	2675	781	
'Azufrado Higuera' (T)	44	45	36	120	100	73	1562	1625	1108	
'Azufrado Regional-87'	39	51	35	120	100	79	1146	1500	1418	
'Azufrado Peruano-87'	48	53	-	118	103	-	1423	1875	_†††	
PVA721/G13094DR17675-5-M	52	49	37	127	98	76	2534	1125	1370	
G18258/WAF-9 CCTM -14814-M-1M	53	52	38	124	100	75	2152	875	1380	
(Mo-95-96-3413/AA33)-6-1-1	54	45	36	130	100	78	1666	3300	700	
'Flor de Mayo P-17'	55	53	34	127	102	78	2325	2000	964	
'Flor de Mayo P-2'	63	45	41	124	103	83	1736	1275	1542	
'Rayado Rojo'	54	52	35	125	100	66	1597	1475	1581	
DMS (0.05)	8.9	7.3	8.6	11	12.4	9.4	443	543	672	
CV (%)	7.6	9.3	8.8	5.6	6.4	7.3	22.1	18.9	17.6	
Promedio							1666	1997	1187	

[†] Días después de la siembra.

^{††} Número de genotipos por tipo de hábito de crecimiento.

^{††} Localidades: Mo = Los Mochis, Sinaloa, Ce = Celaya, Guanajuato., Co = Cotaxtla, Veracruz.

^{†††} No incluido en el ensayo.

Con respecto a los testigos, se observó que 'Azufrado Higuera' de hábito determinado fue superado en rendimiento de grano por genotipos del mismo hábito en las tres localidades (Cuadro 4); 'Negro INIFAP' de hábito indeterminado tipo II, fue superado por la variedad 'Negro Nayarit' en dos localidades y por 'Negro Citlali' en Celaya, Gto. (Cuadro 5). Los testigos 'Flor de Junio Silvia' y 'Flor de Mayo Anita', ambos de hábito indeterminado tipo III, fueron superados por pocas líneas experimentales en las tres localidades (Cuadro 6).

En promedio, los 64 genotipos fueron más tardíos en Los Mochis, y más precoces en Cotaxtla donde se registró el menor numero de días a madurez fisiológica (Cuadros 4, 5 y 6); esa respuesta a través de localidades fue debida a las diferentes temperaturas ocurridas en cada localidad durante el ciclo del cultivo, que fueron más altas en Cotaxtla y más bajas en Los Mochis. El ciclo de cultivo se redujo en Cotaxtla, lo cual explica el menor rendimiento promedio en esa localidad; el mayor ciclo de cultivo observado en Los Mochis sugiere la ocurrencia de temperaturas bajas (subóptimas) durante el ciclo, temperaturas que no condujeron a obtener altos rendimientos pero si a un ciclo de cultivo más largo (Wallace *et al.*, 1993).

Cuadro 5. Características agronómicas de 24 genotipos de frijol de hábito indeterminado (tipo II) establecidos en tres localidades en condiciones de riego.

Canadina	D	ías a flor	t	Días a madurez [†]			Rendimiento (kg ha ⁻¹)		
Genotipo	$Mo^{\dagger\dagger}$	Ce	Co	Mo	Ce	Co	Mo	Ce	Co
A 55	58	55	41	122	100	77	1631	2425	949
'Negro INIFAP' (T)	65	55	42	126	103	75	1666	3625	1325
'Negro Cotaxtla-91'	63	58	40	124	105	76	1076	3425	2085
'Negro Medellín'	62	56	39	120	103	75	1354	3550	1778
'Negro Nayarit'	62	54	41	122	103	82	2153	3775	2301
'Negro Tacaná'	62	56	42	120	103	78	1840	3450	1900
A 525	62	55	43	129	103	85	1631	2375	1528
AP78/Mo-91-92-2029-9M	59	55	39	125	103	75	1874	3725	1351
AP78/Mo-91-92-2029-19M	55	45	37	123	103	72	1527	3025	1019
C72//(C72xAAm33/C72)	55	49	36	115	98	78	2082	3300	1284
AZPA 288	56	54	40	117	100	84	1423	2750	1624
AZPA 260	60	53	40	115	100	80	1354	3850	1832
AZPA 278	55	52	37	116	100	73	2013	2925	935
AZPA 280	55	53	42	116	103	84	1769	2700	866
AZPA 292	54	53	42	123	103	82	2186	3000	1176
AP78/Mo-91-92-1585	56	55	41	126	105	80	2152	3000	1160
AP78/Mo-91-92-2029-4-M-M-M-3M	54	42	38	125	98	79	2152	800	971
AR87/(AZPA5/(II5FrM4-MMM	E (57	40	123	105	81	1840	750	1745
//(G22242/XAN143) ANxMo-91-92-2029-2-2-2M	56 56	37 45			105		1666		941
ANXM0-91-92-2029-2-2-2M AZPA-31	30 49	52	44	117 117	100	82	1979	4125 3700	941
PVA-721/G13094DR17675-5M	54	32 47	- 42	117	100	- 78	1527	1000	1294
97-RS-101	53	52		119	100	-	2187	4500	1294
97-RS-101 97-RS-110	53 54	50	36	118	103	- 71	2257	1125	1126
'Flor de Mayo P-1'	61	53	41	124	100	83	2152	2400	752
•									
'Negro Citlali'	61	56	41	125	105	74	1735	4475	2048
C V (%)	6.4	7.6	6.9	6.9	7.4	5.8	20.7	26.2	19.3
DMS (0.05)	6.8	8.2	6.0	9.5	8.2	6.6	634	746	784
Promedio							1809	2951	1467

[†] Días después de la siembra.

^{†*}Localidades: Mo = Los Mochis, Sinaloa, Ce = Celaya, Guanajuato, Co = Cotaxtla, Veracruz.

Cuadro 6. Características agronómicas de 24 genotipos de frijol de hábito indeterminado tipo III establecidos en tres localidades en condiciones de riego.

Genotipo —	D	ías a flor	†	Г	ías a madu	rez [†]]	Rendimiento (kg ha ⁻¹)		
- Сепопро	$\mathrm{Mo}^{\dagger\dagger}$	Ce	Co	Mo	Ce	Co	Mo	Ce	Co	
'Negro Sahuatoba'	63	59	41	123	105	81	1457	3325	1769	
'Negro Altiplano'	57	54	36	122	103	78	2082	2750	1528	
'Jamapa Plus'	-	57	42	-	103	77	-	3125	1129	
AP78/Mo-91-92-2029-9M	54	48	37	125	97	80	1770	2800	1195	
II5FRM-4-M-M-M/AAm33	60	54	43	124	103	85	1666	3175	855	
Mo-82-83-4044/ZAA 78-2-2	59	52	42	117	103	82	2429	4550	911	
AR87/1963 (95-96)	56	54	38	115	105	80	1874	2675	1413	
AP78/45DRM-4-M-M-M-3M	56	54	39	117	105	82	1666	4400	2184	
AP78/C72-36-M-M-M	56	55	41	125	105	81	2071	3000	1831	
PP80/CL-3-M-M-M	56	49	35	127	100	80	1735	3900	1825	
Comp-Mo-1/Mo-91-92-2029	55	46	38	126	100	72	1840	3800	919	
AP78/AP-87/CCTM 19350-9-1-M-2M	61	53	40	116	103	85	1284	2750	723	
Mo-94-95-1740-9-CM-1-1-1-M	56	52	37	128	103	72	1840	2625	1251	
AP78/Mo-91-92-2029-20-M	55	55	40	124	105	80	1666	2125	2142	
PVA721/G13094DR17675-6-M	54	53	42	127	103	79	1551	2300	1247	
AR87/CL-20-2-CM-M	54	52	38	124	100	73	1632	775	1346	
AFR-88/WAF-9 CCTM14820-M-1-M	55	53	37	118	105	70	2013	2025	1193	
PIMPA-11	54	45	36	118	100	66	1528	3575	1085	
'Pinto Bayacora'	52	43	-	117	95	-	1597	1500	-	
PR 96003-22	55	54	40	124	103	64	1076	1350	1654	
'Flor de Junio Silvia'	61	55	37	129	105	81	1458	3425	1636	
'Flor de Mayo Anita'	62	58	40	120	100	84	2325	3875	1525	
DON 38	62	52	39	124	103	79	1285	3850	2276	
C V (%)	5.6	6.4	5.4	7.8	6.9	6.7	17.5	20.3	21.4	
DMS (0.05)	6.8	6.2	7.0	9.1	8.2	6.5	634	742	782	
Promedio							1726	2942	1480	

[†]Número de días después de la siembra.

Cuadro 7. Correlaciones simples entre el rendimiento y características agronómicas relacionadas con la arquitectura erecta en frijol bajo riego en dos localidades, Los Mochis, Sinaloa y Cotaxtla, Veracruz.

	Rendimiento	Altura de	Madurez fisiológica	Acame †	Grosor de hipocótilo (mm)
	(kg ha ⁻¹)	vaina (cm)	(días)		
Rendimiento	-	0.04 ns	0.05 ns	-0.36 ns	0.24 ns
(kg ha ⁻¹)			0.03 lis		
Altura vaina (cm)	0.02 ns	-	0.29 *	-0.46 **	0.45 **
Madurez fisiológica (días)	0.03 ns	0.25 *	-	0.21 ns	0.45 **
Acame †	0.23 ns	-0.36 **	0.18 ns	-	-0.43 **
Grosor de hipocótilo (mm)	0.12 ns	0.37 **	0.48 **	-0.34 **	-

^{*, **} Significativo, 0.05 y 0.01, respectivamente y ns= no significativo. Los valores arriba de la diagonal corresponden a la localidad de Los Mochis, Sinaloa, y los de abajo a Cotaxtla, Veracruz.

^{††} Localidades: Mo = Los Mochis, Sinaloa, Ce = Celaya, Guanajuato, Co = Cotaxtla, Veracruz.

 $^{^{\}dagger}$ Se utilizó una escala visual de 1 a 4, 1 = sin acame, 4 = todas las plantas acamadas.

Características morfológicas

Para poder desarrollar cultivares de frijol con planta erecta, primero es necesario identificar las características morfológicas asociadas, mismas que pueden diferir entre tipos de frijol, sobre todo entre variedades con diferente tamaño de grano (Teixeira et al., 1999). Adams (1973) estableció que las variedades con arquitectura ideal deberán poseer un tallo fuerte y grueso, de tal forma que el transporte interno de nutrientes sea eficiente y que las plantas sean resistentes al acame. Con respecto a las características morfológicaos evaluadas en Los Mochis y Cotaxtla, se detectaron diferencias significativas (P \le \text{ 0.05) en las seis características consideradas; dos fenológicas: días a flor y a madurez fisiológica, tres de tipo morfológico: grosor del hipocótilo, altura de la primera vaina y acame. Estas características pueden considerarse importantes en relación a la arquitectura de planta erecta, sobre todo el grosor del hipocótilo, característica que ha mostrado heredabilidad intermedia y efectos aditivos en su control (Acosta et al., 1988; Acquua et al., 1991), mientras que la altura de la primera vaina es importante para la cosecha directa. También la longitud del entrenudo se considera una característica importante en el desarrollo de cultivares de planta erecta (Teixeira et al., (1999).

Relación entre características

Las relaciones entre caracteres morfológicos fueron las siguientes: a mayor número de días a madurez, mayor altura de la vaina y grosor del hipocótilo; la altura de la vaina mostró una relación inversa con el acame (P < 0.01), es decir a menor altura de la vaina, mayor porcentaje de acame de la planta (Cuadro 7). El acame presentó una relación inversa con el grosor del hipocótilo $(P \le 0.01)$, a mayor acame menor grosor del hipocótilo. Como fue señalado por otros autores (Adams, 1982; Acquua et al., 1991), a través de estos caracteres morfológicos se establecen los criterios para la identificación de prototipos de planta de arquitectura erecta; sin embargo, en los sistemas de producción utilizados, ninguno de ellos se relacionó con el rendimiento. Para lograr un mayor rendimiento con genotipos erectos, sobre todo de los de hábito determinado, se requiere de un balance adecuado de los caracteres asociados al tipo de planta erecta y los relacionados con alto rendimiento; otra posibilidad es la modificación del sistema de siembra para acomodar un mayor numero de plantas por unidad de área (Park, 1993). En un estudio de heredabilidad por Teixeira et al. (1999), de un grupo de caracteres relacionados con la arquitectura de planta erecta en frijol, la longitud de los entrenudos mostró amplia variación y los efectos aditivos

fueron preponderantes en el control del carácter. Efectos similares han sido señalados para el grosor del tallo en frijol de temporal o secano (Acosta *et al.*, 1988).

El acame fue la única característica morfológica que mostró ligera asociación con el rendimiento (Cuadro 7), lo que parece explicable si se considera que las variedades de hábito indeterminado postrado tipo III, por lo general fueron de alto rendimiento y con ramas y vainas que tocan el suelo, lo cual pudiera considerarse como problema de acame. Se considera que plantas del tipo III no son adecuadas para la cosecha directa, pero su cosecha mecanizada se realiza mediante varios pasos de maquinaria. Las variedades de hábito indeterminado arbustivo tipo II, se consideran con un tipo de planta erecta fisiológicamente eficiente (Adams, 1973; Adams, 1982; Kelly y Adams, 1987; Acquaah et al., 1991), pero que generalmente poseen semillas pequeñas (Teixeira et al.,1999) y se ha observado un alto grado de dificultad en el desarrollo de variedades de habito indeterminado y erectas con semillas de tamaño intermedio y grande (Kelly y Adams, 1987; Brothers y Kelly, 1993).

Los resultados sugieren que los materiales sobresalientes en tipo de planta erecta y rendimiento aceptable, como A 525, 'Negro Nayarit', 'Negro Tacana' y 'Negro Citlali', deben utilizarse en cruzamientos con los materiales sobresalientes en rendimiento en los tipos comerciales de interés. Es probable que en las diferentes localidades, distintos progenitores sean los adecuados. Los tres últimos genotipos poseen grano de valor comercial y pueden utilizarse en las regiones donde el grano de color negro opaco es aceptado por los consumidores.

En el proceso de selección, las características como grosor del hipocótilo o del tallo y longitud de los entrenudos pueden ser utilizados como criterios de selección en generaciones intermedias, ya que su efectividad con base en plantas individuales en generaciones tempranas presenta bajos niveles de heredabilidad (Teixiera et al., 1999). Entre los materiales de hábito determinado, que aun con menor altura de planta que los arriba mencionados, también pueden utilizarse como progenitores e inclusive ser cosechados en forma directa, se identifico material de con rendimiento aceptable, se identificaron las líneas: AZPA5/Can-100-6-1-2-2-M2, (Mo-95-96-3413/AAm33)-6-1-1, AZPA5/ Montcalm v AZPA 230, que superaron a los testigos a través de las localidades de prueba y cuyo grano es de valor comercial en Sinaloa y Guanajuato.

Se considera que la distancia entre surcos utilizada en las pruebas realizadas, no fue la adecuada para la obtención de alto rendimiento con plantas erectas o de hábito determinado, cuya capacidad competitiva es reducida. Es decir, los materiales sobresalientes en tipo de planta erecta deberán ser evaluados en altas densidades (Park, 1993; Teixeira *et al.*, 1999), ya sea en surcos más estrechos que los aquí utilizados o bien en camas con doble o triple hilera para determinar su potencial de rendimiento bajo esos sistemas de producción.

CONCLUSIONES

A través de localidades, diferentes genotipos de frijol de hábito de crecimiento indeterminado fueron los de mayor rendimiento, en casi todos los casos. En cada localidad se identificaron genotipos introducidos con alto potencial de rendimiento.

Los caracteres morfológicos relacionados con la arquitectura de planta erecta: altura de la primera vaina, días a madurez fisiológica, acame de planta y grosor del hipocótilo, no mostraron relación con el rendimiento. Por el contrario, el acame de la planta mostró relación negativa significativa con el rendimiento.

Los genotipos de planta erecta con mayor rendimiento a través de localidades fueron de hábito indeterminado tipo II, A 525, 'Negro Nayarit', 'Negro Tacaná' y 'Negro Citali', todos de grano pequeño.

BIBLIOGRAFÍA

- Acosta G J A, R Ochoa M, I Sánchez V (1988) Efecto del genotipo y del ambiente en algunas características agronómicas del frijol de temporal. Agric. Téc. Méx. 14:1-15.
- Acquaah G, M W Adams, J D Kelly (1991) Identification of effective indication of erect plant architecture in dry bean ideotype. Crop Sci. 31:261-264.
- Adams M W (1973) Plant architecture and physiological efficiency in the field bean. In: Potentials of Field Beans and other Food Legumes in Latin America. Series Seminars No. 2E, Cali, Colombia (Centro Internacional de Agricultura Tropical) pp:266-278.
- Adams M W (1982) Plant arquitecture and yield breeding in *Phaseolus vulgaris* L. Iowa State J. Res. 56:225-254.
- Brothers M E, J D Kelly (1993) Interrelationship of plant architecture and yield components in the pinto bean ideotype. Crop Sci. 33:1234-1238.

- Campo Experimental Valle del Fuerte, CEVAF (2003) Guía para la Asistencia Técnica Agrícola para el Área de Influencia del Campo Experimental Valle del Fuerte. INIFAP-CIRNO, Campo Experimental Valle del Fuerte. Agenda Técnica, 6a ed, Juan José Ríos, Sin. México. 208 p.
- Castellanos J Z, H Guzmán-Maldonado, A Jiménez, C Mejía, J J Muñoz-Ramos, J A Acosta-Gallegos, G Hoyos, E López-Salinas, D González, R Salinas-Pérez, J González-Acuña, J A Muñoz-Villalobos, P Fernández, B Cázares (1997) Hábitos preferenciales de los consumidores de frijol común (*Phaseolus vulgaris* L.) en México. Arch. Latinoam. Nutr. 47:163-168
- Centro Internacional de Agricultura Tropical (1995) Catálogo de Líneas Avanzadas de Frijol del CIAT. A Rodríguez M, F Ramírez H, O Voysest y White J W (comps). CIAT, Cali, Colombia p.285 p.
- Fehr W R (1987) Principles of Cultivar Development. Vol. I Theory and Technique. Macmillan Publishing Company, New York, U.S.A. pp:388-400
- Freed R, S P Eisensmith, S Goetz, D Reicosky, U W Smail, P Wolberg (1991) User's Guide to MSATC. Michigan State University, East Lansing, Michigan.
- **Kelly J D, M W Adams (1987)** Phenotypic recurrent selection in ideotype breeding of pinto beans. Euphytica 36:69-80.
- Park S J (1993) Response of bush and upright plant type selections to white mold and seed yield of common bean in various row widths in Southern Ontario. Can. J. Plant Sci. 73:265-272
- Sabaghnia N, H Deghhani, S S Hossain (2006) Nonparametric methods for interpreting genotype x environment interaction of lentil genotypes. Crop Sci. 46:1100-1106.
- Sexton P J, J W White, K J Bote (1994) Yield-determining processes in relation to cultivar seed size of common bean. Crop Sci. 34:84-91.
- Singh S P (1982) A key for identification of different growth habits of Phaseolus vulgaris L. Ann. Rep. Bean Improv. Coop. 25:92-05
- Singh S P (2001) Broadening the genetic base of common bean cultivars: A review. Crop. Sci. 41:1659-1675.
- Singh S P, A Gutierrez, H Teran (2003) Registration of indeterminate tall upright small black seeded common bean germplasm A 55. Crop Sci. 43:1887-1888
- Teixeira F F, A P Rarmalho, F A B Abreu (1999) Genetic control of plant architecture in the common bean. Genet. Mol. Biol. 22:577-582
- Wallace D H, K S Yourstone, P N Masaya, R W Zobel (1993)

 Photoperiod gene control over partitioning between reproductive and vegetative growth. Theor. Appl. Genet. 86:6-16.
- White J W, A Gonzalez (1990) Characterization of the negative association between seed yield and seed size among genotypes of common bean. Field Crops Res. 23:159-175
- White J W, J Kornegay, J Castillo, C H Molano, C Cajiao, G Tejeda (1992) Effect of growth habit on yield of large-seeded bush cultivars of common bean. Field Crops Res. 29:151-161.