MEJOR PREDICTOR LINEAL E INSESGADO PARA APTITUD COMBINATORIA ESPECÍFICA Y EFECTO RECÍPROCO DE LOS DISEÑOS UNO Y TRES DE GRIFFING

BEST LINEAR UNBIASED PREDICTOR FOR SPECIFIC COMBINING ABILITY AND RECIPROCAL EFFECT OF GRIFFIN'S DESIGNS ONE AND THREE

Osval Antonio Montesinos López^{1*}, Ángel Martínez Garza^{2†}, Ángel Agustín Mastache Lagunas³ y Gilberto Rendón Sánchez²

¹Facultad de Telemática, Universidad de Colima. Av. Universidad No. 333. 28040, Campus Colima, Col., México. ²Programa en Estadística, Colegio de Postgraduados. 56230, Montecillo, Edo. de México. ³Centro de Estudios Profesionales, Colegio Superior Agropecuario del Estado de Guerrero. * *Autor para correspondencia* (oamontes 1@ucol.mx)

RESUMEN

El modelo lineal asociado a los experimentos de cruzas dialélicas tiene efectos fijos y aleatorios; recientemente, en la estimación de aptitud combinatoria general y de efectos maternos se ha incorporado la naturaleza aleatoria de los componentes en el modelo de efectos mixtos. En particular, los diseños uno y tres de Griffing se han utilizado para estimar la aptitud combinatoria general, efectos maternos, aptitud combinatoria específica y efectos recíprocos; en estos dos últimos casos todavía se trata al modelo como de efectos fijos, a pesar de ser de naturaleza aleatoria. En el presente trabajo, para los diseños uno y tres de Griffing establecidos en un diseño experimental de bloques completos al azar, se derivan los mejores predictores lineales e insesgados de aptitud combinatoria específica y de efectos recíprocos, bajo el modelo de efectos mixtos, para obtener estimadores insesgados y de mínima varianza. Adicionalmente, se presenta un algoritmo computacional en SAS-IML para la obtención de estos estimadores.

Palabras clave: Cruzas dialélicas, aptitud combinatoria específica, efectos recíprocos, efectos fijos, modelo de efectos mixtos.

SUMMARY

The linear model associated to experiments for diallel crosses incorporates fixed an random effects; the estimation of general combining ability and maternal effects have been recently done under the correct mixed effects model. However, until now the Griffing's designs one and three have been used to make estimations of specific combining ability and reciprocal effects, under the fixed effects model, even when they actually are of random nature. For this reason in the present work, the empirical best linear unbiased predictors for specific combining ability and reciprocal effects are derived, in Griffing's designs one and three, under the correct mixed effects model. Furthermore, a computational algoritm in SAS-IML commands is also given to estimate such predictors.

Index words: Diallel crosses, specific combining ability, reciprocal effects, fixed effects, mixed effects model.

INTRODUCCIÓN

En el mejoramiento genético de plantas y animales se han utilizado los experimentos de cruzas dialélicas para obtener estimaciones de parámetros y pruebas de hipótesis. Los diseños uno y tres de Griffing (1956a, b) sirven para estimar aptitud combinatoria general (ACG), aptitud combinatoria específica (ACE), efectos maternos (EM), efectos recíprocos (ER) y componentes de varianza. Todo esto es importante para la toma de decisiones en programas de mejoramiento genético. Sin embargo, en tales experimentos la estimación de parámetros se ha basado en el modelo de efectos fijos, con el cual se obtienen estimadores insesgados pero no de mínima varianza, a pesar de que los modelos asociados a los experimentos dialélicos se componen de términos fijos y aleatorios. Aun que en los diseños uno y tres de Griffing los estimadores de ACG y de EM, sobre la base del modelo de efectos mixtos, ya fueron obtenidos por Mastache et al. (1999), con la metodología desarrollada por Henderson (1963, 1973), Harville (1976) y Harville y Carriquiry (1992), hasta ahora no se ha realizado una investigación similar sobre los efectos de ACE y ER.

Por ello, en esta investigación se derivó la metodología para estimar los efectos de aptitud combinatoria específica y de efectos recíprocos, de los diseños uno y tres de Griffing, sobre la base del modelo de efectos mixtos, y para presentar un algoritmo computacional en comandos SAS-IML que permitan la aplicación de la metodología propuesta.

Recibido: 18 de Octubre del 2005. Aceptado: 12 de Mayo del 2006.

MARCO TEÓRICO

Modelo lineal de efectos mixtos

En términos matriciales, el modelo lineal de efectos mixtos puede escribirse de la siguiente forma:

$$Y = X\alpha + Z\theta + \varepsilon (Ec. 1)$$

donde Y es un vector nx1 de observaciones; X es una matriz diseño nxf conocida; α es un vector fx1 de parámetros desconocidos, de efectos fijos; Z es una matriz diseño nxp conocida; θ es el vector px1 no observable de efectos aleatorios, tal que $\theta \sim (0, G\sigma^2 e)$ y ε es un vector nx1 no observable de efectos residuales o términos de error en que $\varepsilon \sim (0, R\sigma^2 e)$. Además, $Var(y) = V\sigma_e^2 = (ZGZ' + R)\sigma_e^2$, $E(y) = X\alpha$. En la mayoría de las aplicaciones G es una matriz diagonal; es decir, $G = (\sigma_\theta^2 / \sigma_e^2)I_p$, σ_θ^2 es la varianza del término aleatorio θ , σ_e^2 es la varianza del término de error, I_p es una matriz identidad de dimensión pxp y R frecuentemente es una matriz identidad. Con relación al modelo (Ec. 1), Henderson (1963, 1973) desarrolló una técnica para tratar los aspectos aleatorios y derivó los mejores predictores lineales e insesgados (MPLI).

Al suponer un modelo de efectos mixtos en el cual además del vector de observaciones (Y), de efectos fijos (α) y del error (ε), se tienen dos vectores de efectos aleatorios (θ_1 y θ_2). Además, se supone que se desea estimar el vector θ_2 conociendo los vectores Y, α y θ_1 . Por tanto, es aconsejable expresar el modelo lineal de efectos mixtos correspondiente en forma explícita; es decir realizar la expansión del modelo lineal de efectos mixtos de la Ec. 1.

Extensión del método de Henderson para obtener los MPLI

Al expandir el modelo lineal de efectos mixtos como:

$$Y = X\alpha + Z_1\theta_1 + Z_2\theta_2 + \varepsilon$$
 (Ec. 2)

donde Y es un vector nx1 de observaciones; X es una matriz diseño nxf conocida; α es un vector fx1 de efectos fijos no conocidos; Z_I es una matriz diseño nxp conocida; θ_I es un vector px1 de efectos aleatorios, tal que $\theta_1 \sim (0, G_1 \sigma^2 e)$; Z_2 es una matriz diseño nxk también conocida; θ_2 es un vector kx1 de efectos aleatorios con $\theta_2 \sim (0, G_2 \sigma^2 e)$ y \mathcal{E} es un vector nx1 no observable de efectos residuales o términos de error en que

 $\varepsilon \sim N_n(\theta, R\sigma_{-e}^2)$. Además, $Var(y) = (Z_1G_1Z_1' + Z_2G_2Z_2' + R)\sigma_e^2$ = $V\sigma_e^2$, $G_1 = (\sigma_{\theta_1}^2/\sigma_e^2)I$ y $G_2 = (\sigma_{\theta_2}^2/\sigma_e^2)I$. Por tanto, la densidad conjunta de θ_1 , θ_2 y y es $f(y,\theta_1,\theta_2) = d(y/\theta_1,\theta_2)c_1(\theta_1)c_2(\theta_2)$, donde $c_1(\theta_1)$ es la densidad marginal de θ_1 , $c_2(\theta_2)$ es la densidad marginal de θ_2 y $d(y/\theta_1,\theta_2)$ es la densidad condicional de y dados θ_1 y θ_2 . En forma explícita la densidad conjunta es:

$$f(y,\theta_{1},\theta_{2}) \propto \begin{cases} e^{\frac{-1}{2\sigma_{e}^{2}}(y-X\alpha-Z_{1}\theta_{1}-Z_{2}\theta_{2})'R^{-1}(y-X\alpha-Z_{1}\theta_{1}-Z_{2}\theta_{2})} \\ e^{\frac{-1}{2\sigma_{e}^{2}}\theta_{1}'G_{1}^{-1}\theta_{1}} \end{cases} \begin{cases} e^{\frac{-1}{2\sigma_{e}^{2}}\theta_{2}'G_{2}^{-1}\theta_{2}} \end{cases}$$
(Ec. 3)

Al maximizar la Ec. 3 con respecto a α , θ_1 y θ_2 , se derivan las ecuaciones normales del modelo mixto:

$$XR^{-1}X\hat{\alpha} + XR^{-1}Z_{1}\hat{\theta}_{1} + XR^{-1}Z_{2}\hat{\theta}_{2} = XR^{-1}y$$

$$Z_{1}R^{-1}X\hat{\alpha} + \left[Z_{1}R^{-1}Z_{1} + G_{1}^{-1}\right]\hat{\theta}_{1} + Z_{1}R^{-1}Z_{2}\hat{\theta}_{2} = Z_{1}R^{-1}y \quad \text{(Ec. 4)}$$

$$Z_{2}'R^{-1}X\hat{\alpha} + Z_{2}'R^{-1}Z_{1}\hat{\theta}_{1} + \left[Z_{2}'R^{-1}Z_{2} + G_{2}^{-1}\right]\hat{\theta}_{2} = Z_{2}'R^{-1}y$$

Las soluciones de $\hat{\alpha}$, de las ecuaciones normales (Ec. 4), son idénticas a las de mínimos cuadrados generalizados obtenidas de la ecuación:

$$X'V^{-1}X\hat{\boldsymbol{\alpha}} = X'V^{-1}y$$
 con $V = Z_1G_1Z_1' + Z_2G_2Z_2' + R$ y $Var(y) = V\sigma_{\boldsymbol{\rho}}^2$.

Con la ventaja computacional, en las ecuaciones normales (Ec. 4), de no requerir la inversa de V. Por tanto, al conocer el vector θ_1 o en su caso $\hat{\theta}_1$, el mejor predictor lineal e insesgado de θ_2 de las ecuaciones (Ec. 4), es:

$$\hat{\boldsymbol{\theta}}_{2} = \left[\mathbf{Z}_{2}' \mathbf{R}^{-1} \mathbf{Z}_{2} + \mathbf{G}_{2}^{-1} \right]^{-1} (\mathbf{Z}_{2}' \mathbf{R}^{-1} \mathbf{y} - \mathbf{Z}_{2}' \mathbf{R}^{-1} \mathbf{X} \hat{\boldsymbol{\alpha}} - \mathbf{Z}_{2}' \mathbf{R}^{-1} \mathbf{Z}_{1} \hat{\boldsymbol{\theta}}_{1})$$
(Ec. 5)

En la práctica raras veces se conocen los componentes de varianza involucrados en G_1 , G_2 y R; sin embargo, de acuerdo con Harville y Carriquiry (1992) en este caso es procedente utilizar los estimadores de los componentes de varianza correspondientes, para obtener los MPLI empíricos. En este trabajo los componentes de varianza se estiman por el método de momentos, cuyas propiedades son descritas por Robinson (1991). Sin embargo, algunas veces ocurren estimaciones negativas en cuyo caso, de acuerdo

con Robinson (1991), se pueden considerar iguales a cero, aunque esto hace que los estimadores sean sesgados.

Modelo lineal en experimentos dialélicos

Si se incluyen los efectos maternos, de acuerdo con Martínez (1983, 1988), el modelo lineal apropiado para el análisis de experimentos dialélicos, establecidos en diseño de bloques completos al azar, es:

$$y_{ijk} = \mu + g_i + g_j + s_{ij} + m_i - m_j + l_{ij} + \delta_k + e_{ijk}$$

 $1 \le i, j \le p, \quad k = 1, 2 \dots, r$
(Ec. 6)

donde yijk es el valor fenotípico observado de la cruza (i,j) en el bloque k; μ es un efecto común a todas las observaciones; g_i es el efecto de aptitud combinatoria general del progenitor i; s_{ij} es el efecto de aptitud combinatoria específica de la cruza (i,j); m_i es el efecto materno del progenitor i; lij es el efecto recíproco de la cruza (i,j); δ_k es el efecto del bloque k; y e_{ijk} es el efecto aleatorio del error correspondiente a la observación (i,j,k). Los términos g_i , s_{ij} , m_i , l_{ij} y e_{ijk} se consideran como variables aleatorias normales no correlacionadas entre y dentro de ellas, con media cero y varianzas $l_{ii} = -l_{ii}$. Si sólo se consideran las medias de las cruzas y se elimina el efecto de bloques, dado que éste es ortogonal con las cruzas, la representación del modelo (Ec. 6) se reduce a:

$$\bar{y}_{ij.} = \mu + g_i + g_j + s_{ij} + m_i - m_j + l_{ij} + \bar{e}_{ij.}$$
 (Ec. 7)

RESULTADOS

Estimación de los MPLI de ACE y ER

Cuando se ensayan las p(p-1)/2 cruzas directas y las p(p-1)/2 cruzas recíprocas, se genera el diseño tres de Griffing, por lo que en este caso t = p(p-1), cuando se ensayan las cruzas directas, las recíprocas y las p autofecundaciones, se trata del diseño uno de Griffing, por lo que $t = p^2$. Por tanto, la derivación analítica de los MPLI de ACE y de ER es similar para ambos diseños, si se tiene la precaución de generar adecuadamente los elementos matriciales correspondientes a cada diseño. Además, al introducir la variable indicadora q, donde q = 1 para el diseño uno de Griffing y q = 0 para el diseño tres de Griffing, se facilita la derivación de los MPLI de ACE y de ER.

MPLI empírico de ACE

Si en el modelo (Ec. 7) se considera la transformación:

$$\begin{split} &\frac{1}{2}(\bar{y}_{ij.} + \bar{y}_{ji.}) = \mu + g_i + g_j + s_{ij} + \frac{1}{2}(\bar{e}_{ij.} + \bar{e}_{ji.}) \\ &\text{Y si se hace que: } y_{ij.}^* = \frac{1}{2}(\bar{y}_{ij.} + \bar{y}_{ji.}) \text{ y } e_{ij.}^0 = \frac{1}{2}(\bar{e}_{ij.} + \bar{e}_{ji.}), \\ &\text{entonces:} \end{split}$$

$$y_{ij.}^* = \mu + g_i + g_j + s_{ij} + e_{ij.}^0$$
 (Ec.8)

En notación matricial se tiene:

$$y^* = j\mu + Z_{gg} + Z_{ss} + e^0$$
 (Ec. 9)

donde y^* es un vector tx1 de observaciones; j es un vector txt de unos, (t el número total de cruzas); Z_g es la matriz diseño de orden txp, correspondiente a los efectos de aptitud combinatoria general; Z_s es la matriz diseño correspondiente a la aptitud combinatoria específica de orden txh; g es un vector px1 tal que $g \sim N_p(0,G_g\sigma^2_e)$; s es un vector hx1 tal que $s \sim N_h(0,G_s\sigma^2_e)$; y e^0 es un vector txI de términos de error tal que $e^0 \sim N_h(0,R*\sigma^2_e)$, y h = p(2q+p-1)/2. Además:

$$Var(y^*) = E \left[y^* - j\mu \right] (y^* - j\mu)'$$

$$= E \left[(Z_g g + Z_S s + e^0) (Z_g g + Z_S s + e^0)' \right]$$

$$= \left[Z_s \left(\sigma_s^2 I_s \right) Z_s' + Z_g \left(\sigma_g^2 I_p \right) Z_g' + \frac{\sigma_e^2 E}{2r} \right]$$

$$= \left[Z_s G_s Z_s' + Z_g G_g Z_g' + R_* \right] \sigma_e^2.$$
 (Ec. 10)

En donde
$$G_s = \left(\frac{\sigma_s^2}{\sigma_e^2}\right)I_h$$
, $G_g = \left(\frac{\sigma_g^2}{\sigma_e^2}\right)I_p$ y $R* = \frac{E}{2r}$. E es

una matriz simétrica txt formada por unos en las posiciones en las que la cruza es tal que ij = ji y por un dos en los casos en que i = j; es decir, la matriz E es singular, esto implica que R* es también singular. Sin embargo, de acuerdo con Harville (1976), si R* es singular en las ecuaciones normales del modelo mixto, se sustituye R*

por alguna inversa generalizada R_*^- . Por lo antes expresado y por (Ec. 10) se tiene un caso particular del modelo (Ec. 2) en el que n=t, f=1, p=p, k=h y sus componentes son X=j, $\alpha=\mu$, $Z_1=Z_g$, $\theta_1=g$, $Z_2=Z_s$,

 $\theta_2 = s$, R = R* y $\varepsilon = e^0$. Así, las ecuaciones normales del modelo mixto son:

$$j'R^{-}_{*}j\hat{\mu} + j'R^{-}_{*}Z_{g}\hat{g} + j'R^{-}_{*}Z_{s}\hat{s} = j'R^{-}_{*}y^{*}$$

$$Z'_{g}R^{-}_{*}j\hat{\mu} + \left[Z'_{g}R^{-}_{*}Z_{g} + G_{g}^{-1}\right]\hat{g} + Z'_{g}R^{-}_{*}Z_{s}\hat{s} = Z'_{g}R^{-}_{*}y^{*} \quad \text{(Ec. 11)}$$

$$Z'_{s}R^{-}_{*}j\hat{\mu} + Z'_{s}R^{-}_{*}Z_{g}\hat{g} + \left[Z'_{s}R^{-}_{*}Z_{s} + G_{s}^{-1}\right]\hat{s} = Z'_{s}R^{-}_{*}y^{*}$$

Si se conocen los componentes de varianza σ_e^2 , σ_s^2 y σ_g^2 , el mejor predictor lineal e insesgado s de s se obtiene al resolver el sistema de ecuaciones simultáneas (Ec. 11). Con las restricciones y $\sum_{i=1}^{p} \hat{g}_i = 0$ en el sistema de ecuaciones (Ec. 11)

$$j'R^{-}_{*}Z_{s}\hat{s} = 0$$
 y $\sum_{j=1}^{p} \sum_{i=1}^{p} \hat{s}_{ij} = 0$ $j'R^{-}_{*}Z_{g}\hat{g} = 0$;

por tanto:

$$\hat{\mu} = (j'R^{-}_{*}i)^{-1}j'R^{-}_{*}v^{*}$$

y el MPLI de ACE es igual a:

$$\hat{s} = \left[Z_{s}' R_{*}^{-} Z_{s} + G_{s}^{-1} \right]^{-1} \left(Z_{s}' R_{*}^{-} y^{*} - Z_{s}' R_{*}^{-} j \hat{\mu} - Z_{s}' R_{*}^{-} Z_{g} \hat{g} \right) (\text{Ec.} 12)$$

donde $\left[Z_S'R_*^-Z_S + G_S^{-1}\right]^{-1}$ es una matriz diagonal de dimensión hxh (h = p(2q + p - 1)/2), formada por p(p-1)/2 cruzas directas iguales a $\sigma_S^2/(2r\sigma_S^2 + \sigma_e^2)$ y p elementos iguales a $\sigma_S^2/(r\sigma_S^2 + \sigma_e^2)$ correspondientes a las autofecundaciones. Para estos diseños una posible R_*^- es una matriz diagonal $t \times t$, con p elementos correspondientes a las autofecundaciones iguales a $b^* = r$, p(p-1)/2 términos de las cruzas directas equivalentes a b = 2r y p(p-1)/2 ceros relacionados a las cruzas recíprocas. Además, de acuerdo con la derivación hecha por Mastache (1999), $\hat{g} = k_1 \hat{w}_q$, donde \hat{w}_q es el estimador de mínimos cuadrados de ACG,

$$y$$

$$k_1 = \frac{\left[4v^*q + (p-2)v\right]\sigma_g^2}{\sigma_e^2 + \left[4v^*q + (p-2)v\right]\sigma_g^2} \in (0,1), \quad \text{con } v^* = \frac{r\sigma_e^2}{\sigma_e^2 + r\sigma_s^2} \quad y$$

$$v = \frac{2r\sigma_e^2}{\sigma_e^2 + 2r\sigma_s^2}$$

MPLI empírico de ER

Si en el modelo (Ec. 7) se considera la transformación:

$$\begin{split} &\frac{1}{2}(\bar{y}_{ij.} - \bar{y}_{ji.}) = m_i - m_j + l_{ij} + \frac{1}{2}(\bar{e}_{ij.} - \bar{e}_{ji.}) \\ &\text{Y se hace que: } y_{ij.}^{**} = \frac{1}{2}(\bar{y}_{ij.} - \bar{y}_{ji.}) \text{ y } e_{ij.}^{\$} = \frac{1}{2}(\bar{e}_{ij.} - \bar{e}_{ji.}), \\ &\text{entonces} \end{split}$$

$$y_{ij.}^{**} = m_i - m_j + l_{ij} + e_{ij.}^{\$}$$
 (Ec. 13)

En notación matricial se tiene:

$$y^{**} = Z_m m + Z_l l + e^{\$}$$
 (Ec. 14)

donde y^{**} es un vector txI de observaciones; Z_m es la matriz diseño de orden txp, correspondiente a los efectos maternos; Z_I es la matriz diseño correspondiente a los efectos recíprocos txh; m es un vector de orden pxI, tal que $m \sim N_p(0, G_m\sigma_e^2)$; I es un vector de orden hxI, tal que $I \sim N_h(0, G_I\sigma_e^2)$; V es un vector V es un vector V de términos de error, tal que V es un vector V de términos de error, tal que V es un vector V es un vector V de términos de error, tal que V es un vector V es

$$Var(y^{***}) = E\left(y^{*****}y^{*}\right)$$

$$= E\left((Z_{m}m + Z_{l}l + e^{\$})(Z_{m}m + Z_{l}l + e^{\$})'\right)$$

$$= \left[Z_{l}\left(\sigma_{l}^{2}I_{h}\right)Z_{l}' + Z_{m}\left(\sigma_{m}^{2}I_{m}\right)Z_{m}' + \frac{\sigma_{e}^{2}E^{*}}{2r}\right]$$

$$= \left[Z_{l}G_{l}Z_{l}' + Z_{m}G_{m}Z_{m}' + R_{m}\right]\sigma_{e}^{2}. \qquad (Ec. 15)$$

Con
$$G_I = \left(\frac{\sigma_I^2}{\sigma_e^2}\right) I_h$$
, $R_m = \frac{1}{2r} E^*$ y $G_m = \left(\frac{\sigma_m^2}{\sigma_e^2}\right) I_p$. E^* es

una matriz simétrica txt formada por unos en las posiciones en las que la cruza es tal que ij = ji, y por ceros en los casos en que i = j; es decir, la matriz E^* es singular, lo que implica que R_m es una matriz singular. No obstante, de acuerdo con Harville (1976), si R_m es singular en las ecuaciones normales del modelo mixto, se sustituye R_m^{-1} por alguna inversa generalizada R_m^- . Una vez más, por los supuestos anteriores y por Ec. 15, se tiene un caso particular del modelo (Ec. 2) en el que n = t, p = m, k = h y sus componentes son: $Z_1 = Z_m$, $\theta_1 = m$, $Z_2 = Z_l$, $\theta_2 = l$, $R = R_m$ y $\varepsilon = e^{\$}$. De esta forma, las ecuaciones normales del modelo mixto son:

$$\begin{bmatrix}
Z'_{m}R_{m}^{-}Z_{m} + G_{m}^{-1} \end{bmatrix} \hat{m} + Z'_{m}R_{m}^{-}Z_{l} \hat{l} = Z'_{m}R_{m}^{-}y^{**} \\
Z'_{l}R_{m}^{-}Z_{m}\hat{m} + \begin{bmatrix}
Z'_{l}R_{m}^{-}Z_{l} + G_{l}^{-1} \end{bmatrix} \hat{l} = Z'_{l}R_{m}^{-}y^{**} \\
\text{por lo que, el MPLI de ER es equivalente a:}$$

$$\hat{l} = \left[Z_l^* R_m^- Z_l + G_l^{-1} \right]^{-1} (Z_l^* R_m^- y^{**} - Z_l^* R_m^- Z_m \hat{m})$$
 (Ec. 17) donde $\left[Z_l^* R_m^- Z_l + G_l^{-1} \right]^{-1}$ es una matriz diagonal de dimensión hxh , con $h = p(2q + p - 1)/2$ y está formada por $p(p-1)/2$ cruzas directas iguales a $\sigma_l^2 / (2r\sigma_l^2 + \sigma_e^2)$, y p elementos iguales a $(\sigma_l^2 / \sigma_e^2)$ correspondientes a las autofecundaciones. Para estos diseños una posible R_m^- es una matriz diagonal txt con $p(p-1)/2$ elementos correspondientes a las cruzas directas iguales a $b = 2r$ y por $p(p+1)/2$ ceros correspondientes a las autofecundaciones y a las cruzas recíprocas. Además, de acuerdo con Mastache (1999), $\hat{m} = k_2 \hat{u}$ donde \hat{u} es el estimador de mínimos cuadrados ordinarios en el modelo de efectos fijos para los efectos maternos y

$$k_2 = \left[1 + \frac{\sigma_e^2 + 2r\sigma_l^2}{2rp\sigma_m^2}\right]^{-1} \in (0,1)$$

Si se conocen los componentes de varianza σ_e^2 , σ_s^2 y σ_g^2 , entonces en (Ec. 12) se obtiene el MPLI de ACE; de igual manera si se conocen los componentes de varianza σ_e^2 , σ_l^2 y σ_m^2 , entonces en Ec. 17 se obtiene el MPLI de ER. Cuando éstos no se conocen, según Harville y Carriquiry (1992), pueden ser sustituidos por sus respectivos estimadores para obtener los MPLI empíricos.

Componentes de varianza para los diseños uno y tres de Griffing

De acuerdo con Martínez (1983), los estimadores obtenidos a través del método de análisis de la varianza para los diseños uno (q=1) y tres $(q=\theta)$ de Griffing, son: $\hat{\sigma}_{e}^{2} = CME$,

$$\hat{\sigma}_{l}^{2} = (CM_{ER} - CME) / 2r, \ \hat{\sigma}_{m}^{2} = (CM_{EM} - CM_{ER}) / 2rp,$$

$$\hat{\sigma}_{s}^{2} = \frac{p^{2}}{2r[p(p-q)+q]} [CM_{ACE} - CME] \ y$$

$$\hat{\sigma}_{g}^{2} = \frac{1}{2r(2q+p-2)} \left\{ CM_{ACG} - \frac{p(p-1)}{p(p-1)+q} \left[CM_{ACE} - CME \right] - CME \right\};$$

donde *CME* es el cuadrado medio del error; CM_{ER} es el cuadrado medio del efecto recíproco; CM_{EM} es el cuadrado medio del efecto materno; CM_{ACE} es el cuadrado medio de aptitud combinatoria específica y CM_{ACG} es el cuadrado medio de aptitud combinatoria general. De esta manera, sustituyendo $\hat{\sigma}_e^2$, $\hat{\sigma}_s^2$ y $\hat{\sigma}_g^2$ en Ec. 12 se obtienen los MPLI empíricos de ACE; de igual forma sustituyendo $\hat{\sigma}_l^2$ y $\hat{\sigma}_m^2$ en Ec. 17 se obtienen los MPLI empíricos de ER, en los diseños uno y tres de Griffing.

Método de análisis con SAS

Los MPLI empíricos de ACE y de ER se pueden obtener con el programa SAS-IML (SAS, 1989) (Anexo 1). La información completa proveniente de los diseños uno y tres, en un diseño experimental en bloques completos al azar, debe organizarse como se muestra para el diseño uno en el Anexo 1. Además, debe respetarse el nombre del archivo y el orden de las variables especificadas en el comando INPUT, ya que el programa hace uso de ellas. En general, se tendrán cruzas, donde I se refiere al progenitor femenino y J al masculino, con I = i, J = j, $1 \le i, j \le p$, en DIALELO ij = ji, REP se refiere a las repeticiones r; Y es la variable respuesta.

El programa SAS-IML produce los resultados que se presentan en los Cuadros 1 y 2, con lo cual se corrobora la metodología descrita anteriormente.

Cuadro 1. Análisis de varianza generado con el algoritmo en IML de SAS en el diseño uno de Griffing (datos del anexo 1).

FV	GL	SC	CM	F	Pr >F
BLOQUES	1	0.005859	0.005859	0.0003412	0.985506
CRUZAS	15	9744.2751	649.61834	37.830817	3.45E-09
ACG	3	4752.2014	1584.0671	36.523177	0.0003001
ACE	6	260.22935	43.371559	2.5257623	0.0681427
EM	3	4584.8265	1528.2755	31.185495	0.0092102
ER	3	147.01792	49.005972	2.8538849	0.0723831
ERROR	15	257.57507	17.171671		
TOTAL	31	10001.856			

ACG = Aptitud combinatoria general; ACE = Aptitud combinatoria específica; EM = Efectos maternos y ER = Efectos recíprocos.

DISCUSIÓN

Los MPLI de ACE y de ER difieren de los estimadores basados en el modelo de efectos fijos por la presencia de las matrices G_s^{-1} y G_l^{-1} (Henderson, 1963 y 1973; Mastache *et al.*, 1999; Hidalgo *et al.*, 2003; Montesinos *et al.*, 2005) en las Ecuaciones 12 y 17, respectivamente, las cuales involucran los componentes de varianza y afectan a

las matrices $Z_s' R_* Z_s$ y $Z_l' R_m Z_l$, que a su vez hacen que los MPLI de ACE y de ER tengan menor varianza que los obtenidos en el modelo de efectos fijos. También es importante mencionar que esta técnica de estimación desarrollada por Henderson (1963, 1973) para obtener los MPLI, tiene mayor precisión que la de mínimos cuadrados generalizados, aún cuando se obtienen los MPLI empíricos. Aunque Harville y Carriquiry (1992) mencionan que existen situaciones en las que la ganancia en precisión ya no es tan grande y los MPLI empíricos deben analizarse con mayor cuidado.

CONCLUSIONES

En este trabajo se obtienen los MPLI de ACE y de ER, sobre la base del modelo de efectos mixtos, para los diseños uno (q=1) y tres (q=0) de Griffing. Cuando no se conocen los componentes de varianza involucrados en las Ecuaciones 12 y 17, éstos se sustituyen por sus respectivos estimadores y se obtienen los MPLI empíricos de ACE y de ER, lo que ocasiona que la precisión del MPLI no sea tan grande, como cuando se conocen los componentes de varianza involucrados. Aún así, éstos son mejores que los obtenidos bajo el modelo de efectos fijos. Por otro lado, el algoritmo computacional proporciona un análisis completo de estimación y predicción en los diseños de tratamientos uno y tres de Griffing, que considera aleatorios a los efectos de aptitud combinatoria general y específica, efectos maternos y recíprocos, con lo cual se logra un panorama completo de predicción.

BIBLIOGRAFÍA

- **Griffing B (1956a)** A generalized treatment of the use of dialell crosses in quantitative inheritance. Heredity 10:31-50.
- Griffing B (1956b) Concept of general and specific combining ability in relation to dialell crossing systems. Austr. J. Biol. Sci. 9:463-491.
- **Harville D A (1976)** Extension of the Gauss-Markov theorem to include the estimation of random effects. Ann. Statist. 4:384-395.
- Harville D A, A L Carriquiry (1992) Classical and Bayesian prediction as applied to an unbalanced mixed linear model. Biometrics 48:987-1003.
- Henderson C R (1963) Selection index and expected genetic advance.
 In: Statistical Genetics and Plant Breeding. W D Hanson, H F Robinson (eds). Nat. Acad. Sci., Nat. Res. Council, Publication 982, Washington, DC. pp:141-163.
- Henderson C R (1973) Sire evaluation and genetics trends. *In*: Proc. Anim. Breed. Genet. Symp. in Honor of Dr. Jay L. Lush. Am. Soc. Anim. Sci., Champaign, ILL. pp:10-41.
- Hidalgo C J V, A Martínez G, A A Mastache L, G Rendón S (2003) Mejor predictor lineal e insesgado para aptitud combinatoria general y análisis combinado de los diseños dos y cuatro de Griffing. Rev. Fitotec. Mex. 26 (4):319-329.
- Martínez G A (1983) Diseño y Análisis de los Experimentos de Cruzas Dialélicas. Centro de Estadística y Cálculo, Colegio de Postgraduados, Chapingo, México. 252 p.
- Martínez G A (1988) Diseños Experimentales. Ed. Trillas. México. 756
- Mastache L A A, A Martínez G, A Castillo M (1999) Los mejores predictores lineales e insesgados (MPLI) en los diseños uno y tres de Griffing. Agrociencia 33:349-359.
- Montesinos L O A, A Martínez G, A A Mastache L, G Rendón S (2005) Mejor predictor lineal e insesgado para aptitud combinatoria específica de los diseños dos y cuatro de Griffing. Rev. Fitotec. Mex. 28 (4):369-376.
- **Robinson G K (1991)** That BLUP is a good thing: The estimation of random effects. Statist. Sci. 6(1):15-51.
- SAS Institute Inc. (1989) SAS/IML Software: Usage and Reference, Version 6. Cary, N. C. 501 p.

Cuadro 2. Estimación y predicción de aptitud combinatoria específica y de efectos recíprocos para los datos del Anexo 1. El análisis se realizó con el algoritmo en IML de SAS¶.

	Estimación y predicción de ACE			Estimación y predicción de ER				
Cruza	EMC	EMCG	MPLI	MPLI+MEDIA	EMC	EMCG	MPLI	MPLI+MEDIA
1	-1.6635	-1.5245	-0.9775	51.9402	0.0000	0.0000	0.0000	52.9177
2	16.3882	15.8929	-0.4329	52.4848	-5.5200	-5.5200	-1.7325	51.1852
3	1.8998	2.0299	-2.0427	50.8750	-12.4200	-12.4200	1.0764	53.9941
4	2.8898	3.5331	3.3294	56.2471	-20.3625	-20.3625	-0.1417	52.7760
5	2.3040	1.6696	0.6546	53.5723	0.0000	0.0000	0.0000	52.9177
6	3.2948	2.6515	0.7061	53.6239	-15.8475	-15.8475	-3.0034	49.9143
7	-8.7052	-8.8353	-2.3980	50.5197	-16.1850	-16.1850	0.7187	53.6364
8	-0.9044	-0.9133	-0.3256	52.5921	0.0000	0.0000	0.0000	52.9177
9	-13.8668	-13.3716	2.0781	54.9958	-8.3968	-8.3968	-1.5132	51.4046
10	-3.5369	-3.0327	-1.1920	51.7257	0.0000	0.0000	0.0000	52.9177

[¶]SAS son las siglas del software Statistical Analysis System; EMC = Estimador de mínimos cuadrados; EMCG = Estimador de mínimos cuadrados generalizados; MPLI = Mejor predictor lineal e insesgado; MPLI+MEDIA = Mejor predictor lineal e insesgado más el promedio de todas las cruzas.

Anexo 1. Algoritmo computacional en IML de SAS.

DATA MASTACHE; OPTIONS PS=60 PAGENO=1 NONUMBER NODATE; INPUT CRUZA I J DIALELO REP Y; CARDS:

1	1	1	1	1	30.780
1	1	1	1	2	32.700
2	1	2	2	1	30.780
2	1	2	2	2	31.200
3	1	3	3	1	33.720
3	1	3	3	2	31.200
4	1	4	4	1	40.260
4	1	4	4	2	38.040
5	2	1	2	1	36.510
5	2	1	2	2	47.550
6	2	2	5	1	37.200
6	2	2	5	2	46.680
7	2	3	6	1	37.620
7	2	3	6	2	35.700
8	2	4	7	1	37.290
8	2	4	7	2	38.640
9	3	1	3	1	58.500
9	3	1	3	2	56.100
10	3	2	6	1	67.620
10	3	2	6	2	69.090
11	3	3	8	1	60.180
11	3	3	8	2	63.000
12	3	4	9	1	63.360
12	3	4	9	2	63.540
13	4	1	4	1	87.900
13	4	1	4	2	71.850
14	4	2	7	1	70.200
14	4	2	7	2	70.470
15	4	3	9	1	81.390
15	4	3	9	2	79.097
16	4	4	10	1	73.590
16	4	4	10	2	71.610
TITLE "	LOS MPLI	FMPÍRICC	SENTOS	DISEÑOS :	I V 3 DE CRIFFI

TITLE "LOS MPLI EMPÍRICOS EN LOS DISEÑOS 1 Y 3 DE GRIFFING ":

PROC IML;SORT MASTACHE OUT=NUEVO BY CRUZA;USE

NUEVO; READ ALL INTO MATRIZ; CRUZA = MATRIZ[,1];

A = MATRIZ[,2]; B = MATRIZ[,3]; REP = MATRIZ[,5]; N = NROW(MATRIZ);UNO = J(N,1,1); CERO=J(N,1,0); MDIS=DESIGN(CRUZA);

X=UNO||MDIS;XX=X`*X;XXIG=GINV(XX);M=X*XXIG*X`;BLOQ = DESIGN(REP);W=X||BLOQ;WW=W`*W;

WINV = GINV(WW); WWW = W*WINV*W`; IDEN = I(N); Z

=MDIS;ZZ=Z*Z * ;FIJO=UNO||BLOQ;A0=DESIGN(A);B0=DESIGN(B);

T = NCOL(MDIS); R = MAX(REP); P = MAX(B); NC = NCOL(MATRIZ); IF ANY(A=B) THEN Q=1;ELSE Q=0; IF Q = 1 THEN PRINT "DISEÑO 1 DE GRIFFING";ELSE PRINT "DISEÑO 3 DE GRIFFING"; AB =

 $A0+B0;X0=UNO | AB;X0X0=X0^*X0;$

X0IG = GINV(X0X0); M0 = X0*X0IG*X0`; DIAL = MA-

DIAL);

 $Zp = AB; ZpZp = Zp^*Zp; Zm = A0$

B0;ZmZm=Zm`*Zm;MAB=Zm*GINV(ZmZm)*Zm`; S=D*D`;E=I(N);J=UNO;Sm=2*(MDIS*MDIS`)-S;

PRINT N T R P;

TITLE " ANÁLISIS DE VARIANZA ";

FV = J(8, 5, .); UN = J(P, 1, 1); PROG = J(P, 4, .); PPP = J(P, 1, .); PRG = PROG; DO

LLL = 1 TO P BY 1;PPP[LLL,1]=LLL;END;

DO F= 6 TO NC BY 1; VARIABLE=F-5; Y= MATRIZ[,F];FC =(UNO`*Y)**2/N;MEDIA=UNO`*Y/N;SCTOT=Y`*Y-FC;

 $SCE = Y^*(IDEN-WWW)*Y;CME = SCE/((R-1)*(T-1)*($

1)); $CV = (CME^{**}.5)*100/MEDIA; SCB = Y^*(WWW-M)*Y;$

CMB=SCB/(R-1);FBLOQ=CMB/CME; SCCRUZA=(Y`*M*Y)-

FC;CMCRUZA=SCCRUZA/(T-1);FCRUZA=CMCRUZA/CME;

SCACE=Y`*(D0-M0)*Y;CMACE=SCACE/(P*(P-1)/2+P*(Q-

1));FACE=CMACE/CME; SCACG=(Y`*M0*Y)-FC;

CMACG=SCACG/(P-1);FACG=CMACG/CMACE;

SCEM=Y`*MAB*Y;SCER=SCCRUZA-

(SCACG+SCACE+SCEM);CMEM=SCEM/(P-1);

```
CMER = SCER/((P-1)*(P-2)/2); FEM = CMEM/CMER; FER = CMER/CME;
GLBLOQ = (R-1); GLCRUZA = (T-1); GLACG = (P-1);
```

GLACE = (P*(P-1)/2 + P*(Q-1)); GLE = ((R-1)*(T-1)); GLEM = (P-1); GLER = ((P-1)/2 + P*(Q-1)); GLEM = (P-1)/2 + P*(Q-1)); GLEM = (P-1)/2 + P*(Q-1)/2 + P*(Q-1)/21)*(P-2)/2); PROBBLOQ=1-PROBF(FBLOQ,GLBLOQ,GLE);

PROBCRUZA= 1-PROBF(FCRUZA,GLCRUZA,GLE); PROBACG=1-PROBF(FACG,GLACG,GLACE);

PROBACE=1-PROBF(FACE,GLACE,GLE); PROBEM= 1-

PROBF(FEM,GLEM,GLER); PROBER = 1-PROBF(FER,GLER,GLE);

FV[1,1] = R-1;FV[2,1]=T-1;FV[3,1]=P-1;FV[4,1]=P*(P-1)/2+P*(Q-1)/1); FV[5,1] = P-1; FV[6,1] = (P-1)*(P-2)/2; FV[7,1] = (R-1)*(T-1);

FV[8,1] = R*T-1; FV[1,2] =

SCB;FV[2,2] = SCCRUZA;FV[3,2] = SCACG;FV[4,2] = SCACE;FV[5,2] = SCEM;FV[5,2]=SCEM;FV[6,2]=SCER;FV[7,2]=SCE;FV[8,2]=SCTOT; FV[1,3] = CMB;FV[2,3]=CMCRUZA;FV[3,3]=CMACG;

FV[4,3]=CMACE;FV[5,3]=CMEM;FV[6,3]=CMER;FV[7,3]=CME; FV[1,4] = FBLOQ;FV[2,4]=FCRUZA;FV[3,4]=FACG;

FV[4,4] = FACE; FV[5,4] = FEM; FV[6,4] = FER; FV[1,5] = PROB-

BLOQ;FV[2,5] = PROBCRUZA;FV[3,5] = PROBACG;FV[4,5] = PROBACE; $FV[5,5] = PROBEM; FV[6,5] = PROBER; CCC = {"GL}$ "F" "Pr > F" $\}$;

DDD ={"BLOQUES" "CRUZAS" " ACG" " ACE" " EM" " ER" "ERROR" "TOTAL"};

TITLE " ESTIMACIÓN DE LAS COMPONENTES DE VARIANZA ";

VARe = CME; VARr = (CMER-CME)/(2*R); VARm = (CMEM-CMER)/(2*R*P);

IF VARr>0 THEN VARr=VARr;ELSE VARr=0;

IF VARm>0 THEN VARm=VARm;ELSE VARm=0; IF Q=1 THEN

VARs = (CMACE-CME)*P*P/(2*R*(P*P-P+1));

ELSE VARs=(CMACE-CME)/(2*R); IF Q=1 THEN VARg=(CMACG-(2*R*(P-1)*VARs/P)-CME)/(2*R*P);

ELSE VARg=(CMACG-CMACE)/(2*R*(P-2)); IF VARs>0 THEN

VARs=VARs;ELSE VARs=0;IF VARg>0 THEN VARg=VARg; ELSE VARg=0;RR=(VARs/VARe)*S +

E;GRR=GINV(RR);V=R*VARe/(VARe+R*VARs);VV=2*R*VARe/(VARe+2*R*VARe

RI = (VARr/VARe)*Sm + E;GRI = GINV(RI);

TITLE "EMC, EMCG Y EL MPLI DE Gi Y DE Mi ";

 $MU = INV(J^*GRR^*J)^*J^*GRR^*Y$; $EMCg = GINV(Zp^*Zp)^*Zp^*(Y-Zp$

MEDIA*J);EMCGg=GINV(Zp`*GRR*Zp)*Zp`*GRR*(Y-MU*J); IF VARg > 0 THEN K = (4*V*Q + (P-2)*VV)*VARg/(VARe + + (P-2)*VV)*VARg/(V

2)*VV)*VARg);ELSE K=1; MPLIg= K*EMCGg;

PLIMED = MPLIg + MEDIA*UN;;PROG[,1] = EMCg;PROG[,2] = EMCg;PROG[,2] = EMCGg;PROG[,3] = MPLIg;PROG[,4] = MPLIMED; EEE = {"EMC" "EMCG" "MPLI" "MPLI + MEDIA"};FFF = CHAR(PPP,3,0); EEEM = {"EMC" "EMCG" "MPLI" "MPLI + MEDIA"};

FFFM = CHAR(PPP, 3, 0); IF VARm > 0 THEN

KK = (2*R*P*VARm)(VARe+2*R*VARr +2*R*P*VARm);ELSE KK = 1; EMCm = GINV(Zm`*Zm)*Zm`*Y;EMCGm = GINV(Zm`*GRI*Zm)*Zm`*GRI*Y

;MPLIm=KK*EMCGm; PRG[,1]=EMCm;PRG[,2]=EMCGm; PRG[,3]=MPLIm;PRG[,4]=MPLIm+MEDIA*UN;

TITLE "MATRIZ DISEÑO PARA LOS EFECTOS RECÍPROCOS (Zr)": OSV1=B-A; OSV1[LOC(OSV1<0)]=1; OSVV=OSV1;OSVV[LOC(OSVV>0)]=1; DIALL=OSVV#DIAL; RECI-

PRO1=J(N, DIA, .);DO OSV=1 TO DIA;DO CCCC=1 TO N; IF DIALL[CCCC,1]=OSV THEN RECIPRO1[CCCC,OSV]=1; ELSE RECI-PRO1[CCCC,OSV] = 0;

END; END; RECIPRO2=J(N, DIA, .);DO OSV=1 TO DIA;DO CCCC=1 TO N; IF -DIALL[CCCC,1]=OSV THEN RECIPRO2[CCCC,OSV]=1; ELSE RE-CIPRO2[CCCC,OSV]=0; END; END; Zr=RECIPRO1-RECIPRO2;

TITLE "EMC Y MPLI DE ACE Y DE ER";

 $BLUPSACE \!=\! J(DIA,\,4,\,.);\; YYY \!=\! J(DIA,1,.);\;\; DO\;BBB \!=\! 1\;TO\;DIA\;BY$ 1;YYY[BBB,1]=BBB;END;BLUPSER=BLUPSACE;

 $UNN \!=\! J(DIA,1,1); Zs \!=\! D; Zg \!=\! Zp; \ MEDD \!=\! MEDIA *UNN; \ \ IF \ VARg \!>\! 0 \ THEN$ Gg = (VARg/VARe)*I(p); ELSE Gg = 0*I(P);

IF VARs > 0 THEN IGs = (VARe/VARs)*I(DIA); ELSE IGs = 0*I(DIA); R1 = Zg*Gg*Zg` + E;IR1 = GINV(R1);

MUU=INV(UNO`*IR1*UNO)*UNO`*IR1*Y; EMCd=GINV(Zs`*Zs)*Zs`*(Y-UNO*MEDIA);

EMCGd=GINV(Zs`*IR1*Zs)*Zs`*IR1*(Y-UNO*MEDIA);

MPLIs=GINV(Zs`*E*Zs+IGs)*Zs`*E*(Y-UNO*MEDIA-Zg*MPLIg);

MPLIMEDD=MPLIs+MEDD; EMCs=EMCd-(Zs`*Zg/R)*EMCg;

EMCGs=EMCGd-(Zs`*Zg/R)*EMCGg; BLUPSACE[,1]=EMCs; BLUPSACE[,2]=EMCGs;BLUPSACE[,3]=MPLIs; BLUPSA-

CE[,4]=MPLIMEDD; Zf=Zr;Zm=Zm;Zg=Zp;

Rev. Fitotec. Mex. Vol. 29 (3), 2006

IF VARm>0 THEN Gm=(VARm/VARe)*I(P); ELSE Gm=I(P); IF VARr>0 THEN IGf=(VARe/VARr)*I(DIA);

ELSE IGf=0*I(DIA); Rf=Zm*Gm*Zm`+ E;IRf=GINV(Rf);IGr=IGf; EMCdd=GINV(Zr`*Zr)*Zr`*Y;

EMCGdd=GINV(Zr`*IRf*Zr)*Zr`*IRf*Y;

$$\label{eq:mplim} \begin{split} & MPLIr\!=\!GINV(Zf`*E*Zf\!+\!IGr)*Zf`*E*(Y\!-\!Zm*MPLIm); \; EMCr\!=\!EMCdd\!-\!(Zs`*Zm/R)*EMCm; \end{split}$$

EMCGr=EMCGdd-(Zs`*Zm/R)*EMCGm; MPLIRMEDD=MPLIr+MEDD; BLUPSER[,1]=EMCr;BLUPSER[,2]=EMCGr;

BLUPSER[,3]=MPLIr; BLUPSER[,4]=MPLIRMEDD; LLL= {"EMC" "EMCG" "MPLI" "MPLI+MEDIA"}; KKK=CHAR(YYY,3,0);

TITLE "EMC Y MPLI DE LOS EFECTOS DE CRUZAS";

BLUPSCRUZAS=J(T, 4, .); YYYY=J(T,1,.); DO BBBB=1 TO T BY 1; YYYY[BBBB, 1]=BBBB; END; UNNN=J(T,1,1);

MEDDD=MEDIA*UNNN; EGGGG=Zg*MPLIg;ESSSS=Zs*MPLIs; EPPPP=EGGGG+ESSSS; MPLICC3=Z`*EPPPP*(1/R);

EMMMM=Zm*MPLIm;ERRRR=Zr*MPLIr;ECCCC=EMMMM+ERRRR;

MPLICC4=Z`*ECCCC*(1/R); MPLIc=MPLICC3+MPLICC4; EMCc=(Z`*Zs/R)*EMCd+(Z`*Zr/R)*EMCdd;

$$\label{eq:emcGc} \begin{split} &EMCGc = (Z^**Zs/R)^*EMCGd + (Z^**Zr/R)^*EMCGdd; \\ &MPLICMEDDD = MPLIc + \\ &MEDDD; \end{split}$$

 $\label{eq:blupscruzas} BLUPSCRUZAS[,1] = EMCc; BLUPSCRUZAS[,2] = EMCGc; BLUPSCRUZAS[,3] = MPLIc; BLUPSCRUZAS[,4] = MPLICMEDDD;$

LLL11= {"EMC" "EMCG" "MPLI"

"MPLI+MEDIA"};KKK11=CHAR(YYYY,3,0);

TITLE " LA MATRIZ DE COEFICIENTES: C DE ACG Y EM ";

 $IF\ VARg>0\ THEN\ INVGp=(VARe/VARg)*I(P); ELSE\ INVGp=0*I(P); CC1=(UNO`*GRR*UNO)||(UNO`*GRR*Zp);$

CC2 = (UNO`*GRR*Zp)`||((Zp`*GRR*Zp)+INVGp);CC3=CC1`||CC2`; CCCACG=GINV(CC3); IF VARm>0 THEN

INVGm=(VARe/VARm)*I(P);ELSE

INVGm = 0*I(P);CC4 = Zm`*GRI*Zm + INVGm;CCCEM = GINV(CC4);

TITLE " LA MATRIZ DE COEFICIENTES: C DE ACE Y ER ";

 $IF\ VARs > 0\ THEN\ INVGs = (VARe/VARs)*I(DIA); ELSE\ INVGs = 0*I(DIA); CC01 = (UNO)*IR1*UNO) | |(UNO)*IR1*Zs);$

CC02=(UNO`*IR1*Zs)`||((Zs`*IR1*Zs)+INVGs);CC03=CC01`||CC02`; CCCACE=GINV(CC03); CC04=Zr`*IRf*Zr+IGr;CCCER=GINV(CC04);

TITLE " IMPRESIÓN DE RESULTADOS ";

PRINT VARIABLE; PRINT "CUADRO 1. ANALISIS DE VARIANZA"; PRINT FV[ROWNAME=DDD COLNAME=CCC];

PRINT MEDIA[FORMAT = 12.5] CV[FORMAT = 12.5];PRINT ,; PRINT "ESTIMACION DE LAS COMPONENTES DE VARIANZA";

PRINT VARe[FORMAT=12.5] VARr[FORMAT=12.5] VARm[FORMAT=12.5] VARs[FORMAT=12.5] VARg[FORMAT=12.5];

PRINT ,;PRINT MU[FORMAT= 12.5];PRINT /; PRINT "CUADRO 2. ESTI-MACION Y PREDICCION DE ACG";

PRINT PROG[ROWNAME=FFF COLNAME=EEE FORMAT=12.5];PRINT ,; PRINT K[FORMAT= 12.5]; PRINT ,;

PRINT "CUADRO 3. ESTIMACION Y PREDICCION DE EM"; PRINT PRG[ROWNAME=FFFM COLNAME=EEEM FORMAT=12.5]; PRINT ,; PRINT KK[FORMAT=12.5]; PRINT /; PRINT "CUADRO 4. ESTIMACION Y PREDICCION DE ACE"; PRINT BLUPSACE[ROWNAME=KKK COLNAME=LLL FORMAT=12.5]; PRINT ; PRINT "CUADRO 5. ESTIMACION Y PREDICCION DE ER"; PRINT BLUPSER[ROWNAME=KKK COLNAME=LLL FORMAT=12.5]; PRINT /; PRINT "CUADRO 6. ESTIMACION Y PREDICCION DEL EFECTO DE CRUZAS"; PRINT BLUPSCRUZAS[ROWNAME=KKK11 COLNAME=LLL11 FORMAT=12.5]; PRINT /; PRINT "LA MATRIZ DE COEFICIENTES: C DE ACG "; PRINT CCCACG[FORMAT=7.3]; PRINT ,; PRINT "LA MATRIZ DE COEFICIENTES: C DE EM "; PRINT CCCEM[FORMAT=7.3]; PRINT "LA MATRIZ DE COEFICIENTES: C DE ACE "; PRINT "CCCACE[FORMAT=5.3]; PRINT ,; PRINT "LA MATRIZ DE COEFICIENTES: C DE ACE "; PRINT CCCACE[FORMAT=5.3]; PRINT ,; PRINT "LA MATRIZ DE COEFICIENTES: C DE ACE "; PRINT CCCACE[FORMAT=5.3]; PRINT ,; PRINT "LA MATRIZ DE COEFICIENTES: C DE ACE "; PRINT CCCACE[FORMAT=5.3]; PRINT ,; PRINT "LA MATRIZ DE COEFICIENTES: C DE ACE "; PRINT CCCACE[FORMAT=5.3]; PRINT ,; PRINT "LA MATRIZ DE COEFICIENTES: C DE ACE "; PRINT CCCACE[FORMAT=5.3]; PRINT ,; PRINT "LA MATRIZ DE COEFICIENTES: C DE ACE "; PRINT CCCACE[FORMAT=5.3]; PRINT ,; PRINT "LA MATRIZ DE COEFICIENTES: C DE ACE "; PRINT CCCACE[FORMAT=5.3]; PRINT ", PRINT " LA MATRIZ DE COEFICIENTES: C DE ACE "; PRINT ".]

CCCACE[FORMAT=5.3];PRINT ,; PRINT " LA MATRIZ DE COEFICIEN TES: C DE ER "; PRINT CCCER[FORMAT=5.3];PRINT /; END; QUIT;