ALGORITMOS DE APRENDIZAJE AUTOMÁTICO PARA IDENTIFICAR VARI

Contenido principal del artículo

Daniel Ayala-Niño
Juan Manuel González-Camacho

Resumen

La inteligencia artificial ha permitido desarrollar herramientas para el reconocimiento automático de frutos y hortalizas con mayor precisión y rapidez. El desarrollo de nuevos genotipos de árboles frutales requiere del uso de herramientas tecnológicas para la identificación de variedades con mayor robustez que los métodos convencionales. En esta investigación se aplicaron algoritmos de aprendizaje automático para identificar seis variedades de durazno (Prunus persica L.) CP-03-06, Oro Azteca, Oro San Juan, Cardenal, Colegio y Robin a partir de imágenes digitales de hojas. Los modelos máquina de soporte vectorial (SVM), bosque aleatorio (RF) y perceptrón multicapa (MLP) se entrenaron y evaluaron con base en tres descriptores cromáticos y 14 morfológicos extraídos de imágenes digitales. La evaluación del desempeño en predicción de los modelos se realizó con base en métricas globales y específicas para cada clase objetivo (variedad de durazno). Los cinco descriptores más importantes para identificar las variedades de durazno fueron los tres canales de color HSV (hue, saturation, value), la redondez y la excentricidad de las hojas. SVM obtuvo la mayor precisión global de clasificación con Acc de 98.7 % y F1macro de 98 %. SVM obtuvo el mayor puntaje F1 (99.2 %) para identificar la variedad de durazno CP-03-06 y el menor puntaje F1 (96.1 %) para identificar la variedad Cardenal. La utilización conjunta de descriptores cromáticos y morfológicos mejoró el desempeño de los algoritmos de aprendizaje para identificar las seis variedades de durazno. Los modelos SVM, RF y MLP obtuvieron un Acc de 98.7, 98.6 y 97 %, respectivamente. Este estudio muestra el potencial de las técnicas de aprendizaje automático para su aplicación en el reconocimiento de descriptores de interés en cultivos agrícolas y su aplicación a procesos automatizados en la agricultura.

Detalles del artículo

Sección
Artículo Científico

Artículos más leídos del mismo autor/a